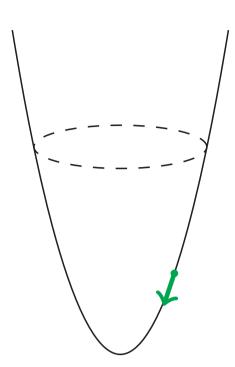


GRADIENT FLOWS ON FINITE STATE MARKOV CHAINS

MOTIVATION

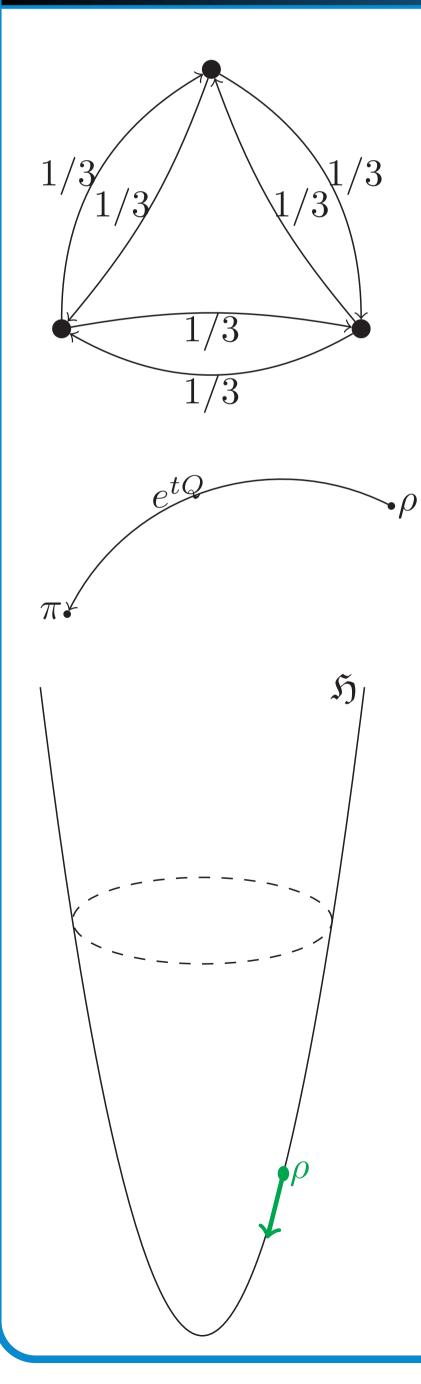


Jordan, Kinderlehrer, and Otto (1998) identified the Fokker-Planck equation

$$\partial_t u - \nabla \cdot (\nabla u + u \nabla V) = 0$$

as gradient flow in $E := \mathcal{P}_2(\mathbb{R}^d)$ using the Wasserstein W_2 distance.

CONSTRUCTION BY MAAS



Let $\mathcal{X} = \{0, \dots, d\}$ be a finite state space and K the transition matrix of a Markov chain.

Then the semigroup e^{tQ} with generator Q = K - Iconverges to the equilibrium π . Is this a gradient flow?

For a gradient flow of the potential \mathfrak{F} , we need a Riemannian metric *g* identifying the cotangent vector $-d\mathfrak{F}$ with the tangent vector $\partial_t \rho$.

Maas (2011) showed that if K is time-reversible, then e^{tQ} is the gradient flow of the relative entropy

$$\mathfrak{H}(\rho) = \sum_{i \in \mathcal{X}} \rho_i \log \frac{\pi_i}{\rho_i}.$$

The constructed metric cannot come from the Wasserstein distance W_2 . Still the metric is motivated by the Wasserstein metric, but the transportation cost depends on the current state.

DECREASING FUNCTIONAL

From the heat flow analogy the relative entropy \mathfrak{H} is a natural functional for the gradient flow.

HELGE DIETERT, CCA, UNIVERSITY OF CAMBRIDGE — hqwd2@cam.ac.uk

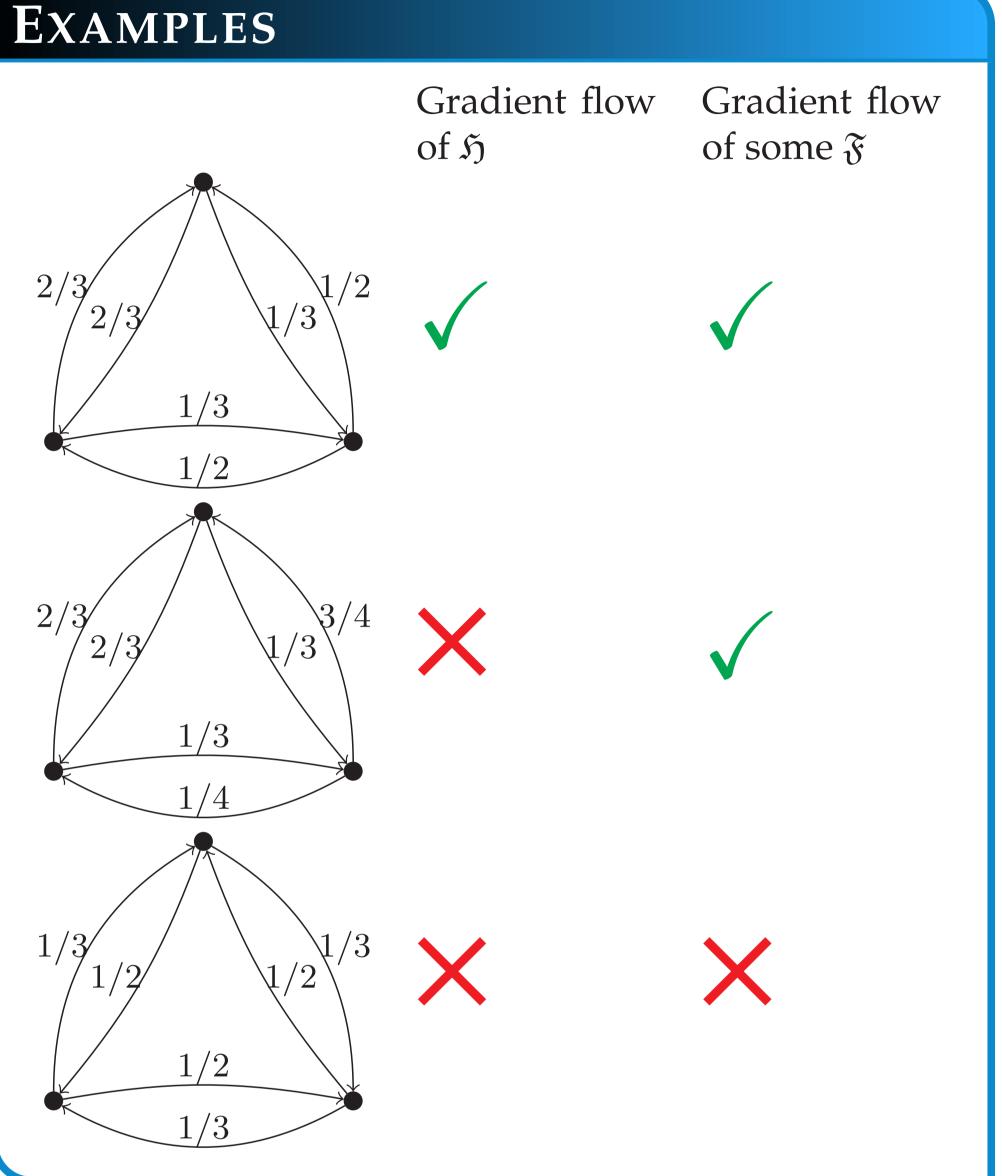
CHARACTERISATION

- When can the semigroup e^{tQ} be written as gradient flow?
- Assuming C^2 potential and C^1 metric we show
 - e^{tQ} is a gradient flow of the relative entropy \mathfrak{H} only if Q is time-reversible,
 - e^{tQ} is a gradient flow of some functional \mathfrak{F} if and only if Q is real diagonalisable.
- The proof idea is to expand the flow around the equilibrium distribution π .
- Together with Maas' construction this shows:
 - The semigroup e^{tQ} can be written as gradient flow of the relative entropy \mathfrak{H} if and only if Qis time-reversible.

UNIQUENESS OF THE METRIC

If $d \geq 2$, then the Riemannian metric g identifying e^{tQ} as gradient flow is unique at the equilibrium π . For $\rho \neq \pi$, there exists another metric g' still identifying the semigroup with the gradient flow but $g \neq g'$ at ρ .

Moreover, if $\mathfrak{F}_{\pi} : \mathcal{P}(\mathcal{X}) \mapsto \mathbb{R}$ is a potential such that every irreducible, time-reversible Markov chain converging to π is a gradient flow with respect to it, then \mathfrak{F}_{π} equals \mathfrak{H} up to quadratic order around π (ignoring rescaling).



REFERENCES

ACKNOWLEDGEMENTS

I would like to thank James Norris for the helpful discussions. This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis.

EPSRC Engineering and Physical Sciences Research Council

[1] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

[2] Jan Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8):2250-2292, 2011.