
Landau Damping

Helge Dietert

University of Cambridge

15 March 2012

Helge Dietert (University of Cambridge) Landau Damping 15 March 2012 1 / 25



1 Vlasov Equation for a Plasma

2 Landau Damping

3 Time Reversibility

4 Outlook

Helge Dietert (University of Cambridge) Landau Damping 15 March 2012 2 / 25



What is a Plasma?

A plasma is a gas with ionized particles (not necessarily all)

Here we consider freely moving electrons within a fixed background
potential (ions are much heavier)
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Level of Description

Microscopic viewpoint
Use newtonian equations of motion for each particle

Infeasible (recall Avogardo number N ∼ 1023)
Hardly answers “childish” questions like how hot is it

Mesoscopic dynamics / Kinetic Theory
Look at distribution of particles

Ask how many particle are doing what
Do not ask which particle
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Equation of Motion

Physically the dynamic of a system is described by a Hamiltonian

H =
n∑

i=1

1
2
vi

2

︸ ︷︷ ︸
kinetic energy

+
n∑

i=1

φ(xi )︸ ︷︷ ︸
external potential

+
∑
i<j

ψ(xi − xj)︸ ︷︷ ︸
Binary interaction

(1)

with equations of motion

d
dt

xi =
∂H
∂vi

= vi

d
dt

vi = −
∂H
∂xi

= −∇φ(xi )−
∑
i 6=j

ψ(xi − xj)
(2)
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Liouville Equation

Consider joint distribution function FN(t, x1, v1, . . . xn, vn). Claim evolution
by

∂FN

∂t
+

n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi
− ∂H
∂xi

.
∂FN

∂vi

)
= 0 (3)

Expected if considering Poisson brackets
Constant along trajectories
Reduces to equation of motion for point masses
Same amount of information
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One Particle Distribution

Try do describe the system by marginal distribution

f (1)(t, x, v) =
∫

FN(t, x, v, x2, v2, . . . xn, vn)dx2dv2 . . . dxndvn (4)

and assume symmetry.
Find dynamic equation by integrating Liouville equation

∂FN

∂t
+

n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi
− ∂H
∂xi

.
∂FN

∂vi

)
= 0 (5)
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Dynamic Equation for f (1)

Recall

∂FN

∂t
+

n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi
− ∂H
∂xi

.
∂FN

∂vi

)
= 0

H =
n∑

i=1

1
2
vi

2 +
n∑

i=1

φ(xi ) +
∑
i<j

ψ(xi − xj)

Integrate first term

∫
∂FN

∂t
(t, x1, v1, x2, v2, . . . xn, vn)dx2dv2 . . . dxndvn =

∂f (1)

∂t
(t, x1, v1)
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Dynamic Equation for f (1)

Recall

∂FN

∂t
+

n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi
− ∂H
∂xi

.
∂FN

∂vi

)
= 0

H =
n∑

i=1

1
2
vi

2 +
n∑

i=1

φ(xi ) +
∑
i<j

ψ(xi − xj)

Integrate second term

∫ n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi

)
dx2dv2 . . . dxndvn =

∫
∂H
∂v1

.
∂FN

∂x1
dx2dv2 . . . dxndvn

= v1.
∂f (1)

∂x1
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∂t
+

n∑
i=1

(
∂H
∂vi

.
∂FN

∂xi
− ∂H
∂xi

.
∂FN

∂vi

)
= 0

H =
n∑

i=1

1
2
vi

2 +
n∑

i=1

φ(xi ) +
∑
i<j

ψ(xi − xj)

Integrate third term

∫ n∑
i=1

(
∂H
∂xi

.
∂FN

∂vi

)
dx2dv2 . . . dxndvn =

∫
− ∂H
∂x1

.
∂FN

∂x1
dx2dv2 . . . dxndvn

= −
∫  ∂φ

∂x1
+

n∑
j=2

∂ψ

∂x1
(x1 − xj)

 .
∂FN

∂x1
dx2dv2 . . . dxndvn
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∂vi
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∫
− ∂H
∂x1

.
∂FN

∂x1
dx2dv2 . . . dxndvn

= −
∫  ∂φ

∂x1
+

n∑
j=2

∂ψ

∂x1
(x1 − xj)

 .
∂FN

∂x1
dx2dv2 . . . dxndvn

= − ∂φ
∂x1

(x1).
∂f (1)

∂v1
− (n − 1)

∫
∂ψ

∂x1
(x− x2).

∂FN

∂x1
dx2dv2 . . . dxndvn

= − ∂φ
∂x1

(x1).
∂f (1)

∂v1
− (n − 1)

∫
∂ψ

∂x1
(x− x2).

∂f (2)

∂x1
dx2dv2

where

f (2)(t, x1, v1, x2, x2) =

∫
FN(t, x1, v1, x2, v2, . . . xn, vn)dx3dv3 . . . dxndvn
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Dynamic Equation for f (1)

Putting everything together gives

∂f (1)

∂t
(t, x, v) + v.

∂f (1)

∂x
(t, x, v)− ∂φ

∂x
(x).

∂f (1)

∂v
(t, x, v)

−(n − 1)
∫
∂ψ

∂x
(x− y)

∂f (2)

∂v
(t, x, v, y,u)dydu = 0

(6)

BBGKY hierarchy
Need to break chain down
Use Molecular Chaos (Boltzmann) as n→∞

f (2) = f (1) ⊗ f (1) (7)

Need appropriate scaling as n→∞
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Mean Field Approximation

Ignore collisions and assume particle only influenced by mean field

(n − 1)
∫
∂ψ

∂x
(x− y)

∂f (2)

∂v
(t, x, v, y,u)dydu ≈ −∂V

∂x
(x)

∂f (1)

∂v

V = −
∫
ψ(x− y)f (1)(y, v)dydv

(8)

With Coulomb interaction ψ(x− y) ∝ 1
|x−y| and recalling fundamental

solution to Poisson equation

∇2V (t, x) =
∫

f (1)(t, x, v)dv (9)
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Vlasov Equation

Including the background potential we arrived at Vlasov equation

∂f
∂t

+ v
∂f
∂x
−∇V .

∂f
∂v

= 0

∇2V = ρions −
∫

f dv
(10)

Assume overall neutrality, i.e.∫
ρionsdx =

∫
f dxdv (11)
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Maxwell Distribution

The equilibrium distribution at temperature T is the Maxwell distribution f0

f0(v) ∝ e−v2/2T (12)

Follows from Boltzmann distribution / canonical ensemble
Maxwell’s original argument uses proposed symmetry
Boltzmann H-Theorem explains why with collisions the system relaxes
towards the Maxwell distribution
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Linearised Equation around Maxwell Distribution
We want to consider a small perturbation h around equilibrium

f (t, x, v) = f0(v) + h(t, x, v) (13)

Vlasov equation
∂f
∂t

+ v
∂f
∂x
−∇V .

∂f
∂v

= 0

∇2V = ρions −
∫

f dv
(14)

Linearised Vlasov equation
∂h
∂t

+ v
∂h
∂x
−∇V .

∂f0
∂v

= 0

∇2V = −
∫

h dv
(15)

Assuming contribution from ions cancels with contribution from f0.
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Split into Fourier Modes
Linearised Vlasov equation

∂h
∂t

+ v
∂h
∂x
−∇V .

∂f0
∂v

= 0

∇2V = −
∫

h dv

These equations are linear, so consider Fourier modes separately. Consider:

hk(v , t)e i(kx)

Mode equation
Dropping index k, and assume k along x-axis:

∂h
∂t

+ ikvxh − ikV
∂f0
∂vx

= 0

k2V =

∫
h dv
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Solving using Laplace Transformation

Introduce Laplace transformation in time

hp(v) =
∫ ∞

0
h(v, t)e−ptdt (16)

then (σ > 0):

h(t, v) =
∫ i∞+σ

−i∞+σ
hp(v)eptdp (17)
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Solution in Laplace Transformation

Using integration by parts and simple algebra we find with initial condition
g(v) = h(t, v):

hp(v) =
1

p + ikvx

(
g(v) + ikVp

∂f0(v)
∂vx

)

Vp =
1
k2 ·

∫ g(v)
p+ikvx

dv

1− i
k2

∫
∂f0
∂vx

dv
(p+ikvx )
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Simplify Solution

Integrate out trivial directions dvy , dvz

g(u) =
∫

g(v)dvydvz (18)

Find

Vp =
1
k2 ·

∫∞
−∞

g(u)
p+ikudu

1− i
k2

∫∞
−∞

df0
du

du
(p+iku)

f0(u) = n

√
1

2πT
e−

u2
2T
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Investigate Solution

Laplace transformation

hp =

∫ ∞
0

h(t)e−ptdt

only defined for p in the right half plane. Extend through analytic
continuation.

Vp =
1
k2 ·

∫∞
−∞

g(u)
p+ikudu

1− i
k2

∫∞
−∞

df0
du

du
(p+iku)

has poles pk at
i

k2

∫
df0
du

du
(p + iku)

= 1 (19)

As df0
du > 0, all poles are in the left half plane.
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Asymptotic Solution

Recall inversion formula (σ > 0)

h(t) =
1
2πi

∫ σ

−i∞+σ
hpeptdp

Shift contour into the left half plane

For t →∞ only contributions from poles:
poles are in the left half plane
decaying potential V
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Limiting behaviour

So we can summarise the limiting behaviour as t →∞
Potential V is decaying
Perturbation h is not decaying
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Time Reversibility

Vlasov equation is time-reversible, so if there are decaying modes there
should also be growing modes

Linearised Equation is not time-reversible
How does the non-linear term evolve?
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Phase Mixing

Strong vs. Weak topology
Only the potential V is decaying. The perturbation h is oscillating.
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Outlook

For what equilibrium distribution does the linear damping occur?

Penrose Criterion
Recently Mouhot and Villani gave a theorem for non-linearised theory
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