Landau Damping

Helge Dietert

University of Cambridge
15 March 2012

(1) Vlasov Equation for a Plasma

(2) Landau Damping
(3) Time Reversibility
4) Outlook

What is a Plasma?

What is a Plasma?

A plasma is a gas with ionized particles (not necessarily all)

Here we consider freely moving electrons within a fixed background potential (ions are much heavier)

Level of Description

Level of Description

- Microscopic viewpoint

Use newtonian equations of motion for each particle

Level of Description

- Microscopic viewpoint

Use newtonian equations of motion for each particle

- Infeasible (recall Avogardo number $N \sim 10^{23}$)
- Hardly answers "childish" questions like how hot is it

Level of Description

- Microscopic viewpoint

Use newtonian equations of motion for each particle

- Infeasible (recall Avogardo number $N \sim 10^{23}$)
- Hardly answers "childish" questions like how hot is it
- Mesoscopic dynamics / Kinetic Theory

Look at distribution of particles

Level of Description

- Microscopic viewpoint

Use newtonian equations of motion for each particle

- Infeasible (recall Avogardo number $N \sim 10^{23}$)
- Hardly answers "childish" questions like how hot is it
- Mesoscopic dynamics / Kinetic Theory

Look at distribution of particles

- Ask how many particle are doing what
- Do not ask which particle

Equation of Motion

Physically the dynamic of a system is described by a Hamiltonian

$$
\begin{equation*}
H=\underbrace{\sum_{i=1}^{n} \frac{1}{2} \mathbf{v}_{\mathbf{i}}^{2}}_{\text {kinetic energy }}+\underbrace{\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right)}_{\text {external potential }}+\underbrace{\sum_{i<j} \psi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}_{\text {Binary interaction }} \tag{1}
\end{equation*}
$$

with equations of motion

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{x}_{i}=\frac{\partial H}{\partial \mathbf{v}_{i}}=\mathbf{v}_{i} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{v}_{i}=-\frac{\partial H}{\partial \mathbf{x}_{i}}=-\nabla \phi\left(\mathbf{x}_{i}\right)-\sum_{i \neq j} \psi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \tag{2}
\end{align*}
$$

Liouville Equation

Consider joint distribution function $F_{N}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}, \ldots \mathbf{x}_{n}, \mathbf{v}_{n}\right)$. Claim evolution by

$$
\begin{equation*}
\frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \tag{3}
\end{equation*}
$$

Liouville Equation

Consider joint distribution function $F_{N}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}, \ldots \mathbf{x}_{n}, \mathbf{v}_{n}\right)$. Claim evolution by

$$
\begin{equation*}
\frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \tag{3}
\end{equation*}
$$

- Expected if considering Poisson brackets
- Constant along trajectories
- Reduces to equation of motion for point masses
- Same amount of information

One Particle Distribution

Try do describe the system by marginal distribution

$$
\begin{equation*}
f^{(1)}(t, \mathbf{x}, \mathbf{v})=\int F_{N}\left(t, \mathbf{x}, \mathbf{v}, \mathbf{x}_{2}, \mathbf{v}_{2}, \ldots \mathbf{x}_{n}, \mathbf{v}_{n}\right) \mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \tag{4}
\end{equation*}
$$

and assume symmetry.
Find dynamic equation by integrating Liouville equation

$$
\begin{equation*}
\frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \tag{5}
\end{equation*}
$$

Dynamic Equation for $f^{(1)}$

Recall

$$
\begin{aligned}
& \frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \\
& H=\sum_{i=1}^{n} \frac{1}{2} \mathbf{v}_{\mathbf{i}}^{2}+\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right)+\sum_{i<j} \psi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
\end{aligned}
$$

Integrate first term

$$
\int \frac{\partial F_{N}}{\partial t}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{x}_{2}, \mathbf{v}_{2}, \ldots \mathbf{x}_{n}, \mathbf{v}_{n}\right) \mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n}=\frac{\partial f^{(1)}}{\partial t}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}\right)
$$

Dynamic Equation for $f^{(1)}$

Recall

$$
\begin{aligned}
& \frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \\
& H=\sum_{i=1}^{n} \frac{1}{2} \mathbf{v}_{i}^{2}+\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right)+\sum_{i<j} \psi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
\end{aligned}
$$

Integrate second term

$$
\begin{aligned}
\int \sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}\right) \mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} & =\int \frac{\partial H}{\partial \mathbf{v}_{1}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \\
& =\mathbf{v}_{1} \cdot \frac{\partial f^{(1)}}{\partial \mathbf{x}_{1}}
\end{aligned}
$$

Dynamic Equation for $f^{(1)}$

Recall

$$
\begin{aligned}
& \frac{\partial F_{N}}{\partial t}+\sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{v}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{i}}-\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right)=0 \\
& H=\sum_{i=1}^{n} \frac{1}{2} \mathbf{v}_{i}^{2}+\sum_{i=1}^{n} \phi\left(\mathbf{x}_{i}\right)+\sum_{i<j} \psi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
\end{aligned}
$$

Integrate third term

$$
\begin{gathered}
\int \sum_{i=1}^{n}\left(\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right) \mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n}=\int-\frac{\partial H}{\partial \mathbf{x}_{1}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \\
=-\int\left(\frac{\partial \phi}{\partial \mathbf{x}_{1}}+\sum_{j=2}^{n} \frac{\partial \psi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}_{1}-\mathbf{x}_{j}\right)\right) \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n}
\end{gathered}
$$

Dynamic Equation for $f^{(1)}$

Integrate third term

$$
\begin{aligned}
\int \sum_{i=1}^{n} & \left(\frac{\partial H}{\partial \mathbf{x}_{i}} \cdot \frac{\partial F_{N}}{\partial \mathbf{v}_{i}}\right) \mathrm{d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n}=\int-\frac{\partial H}{\partial \mathbf{x}_{1}} \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \\
& =-\int\left(\frac{\partial \phi}{\partial \mathbf{x}_{1}}+\sum_{j=2}^{n} \frac{\partial \psi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}_{1}-\mathbf{x}_{j}\right)\right) \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \\
& =-\frac{\partial \phi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}_{1}\right) \cdot \frac{\partial f^{(1)}}{\partial \mathbf{v}_{1}}-(n-1) \int \frac{\partial \psi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}-\mathbf{x}_{2}\right) \cdot \frac{\partial F_{N}}{\partial \mathbf{x}_{1}} \mathrm{~d} \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n} \\
& =-\frac{\partial \phi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}_{1}\right) \cdot \frac{\partial f^{(1)}}{\partial \mathbf{v}_{1}}-(n-1) \int \frac{\partial \psi}{\partial \mathbf{x}_{1}}\left(\mathbf{x}-\mathbf{x}_{2}\right) \cdot \frac{\partial f^{(2)}}{\partial \mathbf{x}_{1}} d \mathbf{x}_{2} \mathrm{~d} \mathbf{v}_{2}
\end{aligned}
$$

where

$$
f^{(2)}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}\right)=\int F_{N}\left(t, \mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{x}_{2}, \mathbf{v}_{2}, \ldots \mathrm{x}_{n}, \mathbf{v}_{n}\right) \mathrm{dx}_{3} \mathrm{~d} \mathbf{v}_{3} \ldots \mathrm{~d} \mathbf{x}_{n} \mathrm{~d} \mathbf{v}_{n}
$$

Dynamic Equation for $f^{(1)}$

Putting everything together gives

$$
\begin{array}{r}
\frac{\partial f^{(1)}}{\partial t}(t, \mathbf{x}, \mathbf{v})+\mathbf{v} \cdot \frac{\partial f^{(1)}}{\partial \mathbf{x}}(t, \mathbf{x}, \mathbf{v})-\frac{\partial \phi}{\partial \mathbf{x}}(x) \cdot \frac{\partial f^{(1)}}{\partial \mathbf{v}}(t, \mathbf{x}, \mathbf{v}) \\
\quad-(n-1) \int \frac{\partial \psi}{\partial \mathbf{x}}(\mathbf{x}-\mathbf{y}) \frac{\partial f^{(2)}}{\partial \mathbf{v}}(t, \mathbf{x}, \mathbf{v}, \mathbf{y}, \mathbf{u}) \mathrm{d} \mathbf{y} \mathrm{~d} \mathbf{u}=0 \tag{6}
\end{array}
$$

- BBGKY hierarchy
- Need to break chain down
- Use Molecular Chaos (Boltzmann) as $n \rightarrow \infty$

$$
\begin{equation*}
f^{(2)}=f^{(1)} \otimes f^{(1)} \tag{7}
\end{equation*}
$$

- Need appropriate scaling as $n \rightarrow \infty$

Mean Field Approximation

Ignore collisions and assume particle only influenced by mean field

$$
\begin{array}{r}
(n-1) \int \frac{\partial \psi}{\partial \mathbf{x}}(\mathbf{x}-\mathbf{y}) \frac{\partial f^{(2)}}{\partial \mathbf{v}}(t, \mathbf{x}, \mathbf{v}, \mathbf{y}, \mathbf{u}) \mathrm{d} \mathbf{y d} \mathbf{u} \approx-\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \frac{\partial f^{(1)}}{\partial \mathbf{v}} \tag{8}\\
V=-\int \psi(\mathbf{x}-\mathbf{y}) f^{(1)}(\mathbf{y}, \mathbf{v}) \mathrm{d} \mathbf{y} \mathrm{~d} \mathbf{v}
\end{array}
$$

With Coulomb interaction $\psi(\mathbf{x}-\mathbf{y}) \propto \frac{1}{|\mathbf{x}-\mathbf{y}|}$ and recalling fundamental solution to Poisson equation

$$
\begin{equation*}
\nabla^{2} V(t, \mathbf{x})=\int f^{(1)}(t, \mathbf{x}, \mathbf{v}) \mathrm{d} \mathbf{v} \tag{9}
\end{equation*}
$$

Vlasov Equation

Including the background potential we arrived at Vlasov equation

$$
\begin{gather*}
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}-\nabla V \cdot \frac{\partial f}{\partial \mathbf{v}}=0 \\
\nabla^{2} V=\rho_{\text {ions }}-\int f \mathrm{~d} v \tag{10}
\end{gather*}
$$

Assume overall neutrality, i.e.

$$
\begin{equation*}
\int \rho_{\text {ions }} \mathrm{d} \mathbf{x}=\int f \mathrm{~d} \mathbf{x} \mathrm{~d} \mathbf{v} \tag{11}
\end{equation*}
$$

Maxwell Distribution

The equilibrium distribution at temperature T is the Maxwell distribution f_{0}

$$
\begin{equation*}
f_{0}(v) \propto e^{-v^{2} / 2 T} \tag{12}
\end{equation*}
$$

- Follows from Boltzmann distribution / canonical ensemble
- Maxwell's original argument uses proposed symmetry
- Boltzmann H-Theorem explains why with collisions the system relaxes towards the Maxwell distribution

Linearised Equation around Maxwell Distribution

We want to consider a small perturbation h around equilibrium

$$
\begin{equation*}
f(t, \mathbf{x}, \mathbf{v})=f_{0}(\mathbf{v})+h(t, \mathbf{x}, \mathbf{v}) \tag{13}
\end{equation*}
$$

Vlasov equation

$$
\begin{gather*}
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}-\nabla v \cdot \frac{\partial f}{\partial \mathbf{v}}=0 \\
\nabla^{2} V=\rho_{\text {ions }}-\int f \mathrm{~d} v \tag{14}
\end{gather*}
$$

Linearised Vlasov equation

$$
\begin{align*}
& \frac{\partial h}{\partial t}+\mathbf{v} \frac{\partial h}{\partial \mathbf{x}}-\nabla V \cdot \frac{\partial f_{0}}{\partial \mathbf{v}}=0 \\
& \nabla^{2} V=-\int h \mathrm{~d} v \tag{15}
\end{align*}
$$

Assuming contribution from ions cancels with contribution from f_{0}.

Split into Fourier Modes

Linearised Vlasov equation

$$
\begin{array}{r}
\frac{\partial h}{\partial t}+v \frac{\partial h}{\partial \mathbf{x}}-\nabla V \cdot \frac{\partial f_{0}}{\partial v}=0 \\
\nabla^{2} V=-\int h \mathrm{~d} v
\end{array}
$$

These equations are linear, so consider Fourier modes separately. Consider:

$$
h_{\mathbf{k}}(v, t) e^{i(\mathbf{k x})}
$$

Mode equation
Dropping index \mathbf{k}, and assume k along \mathbf{x}-axis:

$$
\begin{array}{r}
\frac{\partial h}{\partial t}+i k v_{x} h-i k V \frac{\partial f_{0}}{\partial v_{x}}=0 \\
k^{2} V=\int h \mathrm{~d} v
\end{array}
$$

Solving using Laplace Transformation

Introduce Laplace transformation in time

$$
\begin{equation*}
h_{p}(\mathbf{v})=\int_{0}^{\infty} h(\mathbf{v}, t) e^{-p t} \mathrm{~d} t \tag{16}
\end{equation*}
$$

then $(\sigma>0)$:

$$
\begin{equation*}
h(t, \mathbf{v})=\int_{-i \infty+\sigma}^{i \infty+\sigma} h_{p}(\mathbf{v}) e^{p t} \mathrm{~d} p \tag{17}
\end{equation*}
$$

Solution in Laplace Transformation

Using integration by parts and simple algebra we find with initial condition $g(\mathbf{v})=h(t, \mathbf{v})$:

$$
\begin{aligned}
h_{p}(\mathbf{v}) & =\frac{1}{p+i k v_{x}}\left(g(\mathbf{v})+i k V_{p} \frac{\partial f_{0}(\mathbf{v})}{\partial v_{x}}\right) \\
V_{p} & =\frac{1}{k^{2}} \cdot \frac{\int \frac{g(v)}{p+i k v_{x}} \mathrm{~d} \mathbf{v}}{1-\frac{i}{k^{2}} \int \frac{\partial f_{0}}{\partial v_{x}}\left(p+i k v_{x}\right)}
\end{aligned}
$$

Simplify Solution

Integrate out trivial directions $\mathrm{d} v_{y}, \mathrm{~d} v_{z}$

$$
\begin{equation*}
g(u)=\int g(v) \mathrm{d} v_{y} \mathrm{~d} v_{z} \tag{18}
\end{equation*}
$$

Find

$$
\begin{gathered}
V_{p}=\frac{1}{k^{2}} \cdot \frac{\int_{-\infty}^{\infty} \frac{g(u)}{p+i k u} \mathrm{~d} u}{1-\frac{i}{k^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{d} f_{0}}{\mathrm{~d} u} \frac{\mathrm{~d} u}{(p+i k u)}} \\
f_{0}(u)=n \sqrt{\frac{1}{2 \pi T}} e^{-\frac{u^{2}}{2 T}}
\end{gathered}
$$

Investigate Solution

Laplace transformation

$$
h_{p}=\int_{0}^{\infty} h(t) e^{-p t} \mathrm{~d} t
$$

only defined for p in the right half plane. Extend through analytic continuation.

Investigate Solution

Laplace transformation

$$
h_{p}=\int_{0}^{\infty} h(t) e^{-p t} \mathrm{~d} t
$$

only defined for p in the right half plane. Extend through analytic continuation.

$$
V_{p}=\frac{1}{k^{2}} \cdot \frac{\int_{-\infty}^{\infty} \frac{g(u)}{p+i k u} \mathrm{~d} u}{1-\frac{i}{k^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{d} f_{0}}{\mathrm{~d} u} \frac{\mathrm{~d} u}{(p+i k u)}}
$$

has poles p_{k} at

$$
\begin{equation*}
\frac{i}{k^{2}} \int \frac{\mathrm{~d} f_{0}}{\mathrm{~d} u} \frac{\mathrm{~d} u}{(p+i k u)}=1 \tag{19}
\end{equation*}
$$

As $\frac{\mathrm{d} f_{0}}{\mathrm{~d} u}>0$, all poles are in the left half plane.

Asymptotic Solution

Recall inversion formula ($\sigma>0$)

$$
h(t)=\frac{1}{2 \pi i} \int_{-i \infty+\sigma}^{\sigma} h_{p} e^{p t} \mathrm{~d} p
$$

Shift contour into the left half plane

Asymptotic Solution

Recall inversion formula $(\sigma>0)$

$$
h(t)=\frac{1}{2 \pi i} \int_{-i \infty+\sigma}^{\sigma} h_{p} e^{p t} \mathrm{~d} p
$$

Shift contour into the left half plane

For $t \rightarrow \infty$ only contributions from poles:

- poles are in the left half plane
- decaying potential V

Limiting behaviour

So we can summarise the limiting behaviour as $t \rightarrow \infty$

- Potential V is decaying
- Perturbation h is not decaying

Time Reversibility

Vlasov equation is time-reversible, so if there are decaying modes there should also be growing modes

- Linearised Equation is not time-reversible
- How does the non-linear term evolve?

Phase Mixing

- Strong vs. Weak topology

Only the potential V is decaying. The perturbation h is oscillating.

Outlook

- For what equilibrium distribution does the linear damping occur?

Outlook

- For what equilibrium distribution does the linear damping occur? Penrose Criterion

Outlook

- For what equilibrium distribution does the linear damping occur? Penrose Criterion
- Recently Mouhot and Villani gave a theorem for non-linearised theory

Acknowledgement

I would like to thank Dr Mouhot for introducing me to this area.

