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1 Introduction

A plasma is a system that like a gas consists of nearly free moving particles and where ad-
ditionally some particles are charged. In astrophysics [5, 22] this is a very common state of
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matter, e.g. what we see from the sun is a plasma. Also in technical applications on earth it is
common, e.g. in modern galvanization, in fluorescent lamps, or in attempts to build a fusion
reactor. Even the freely moving electrons in a metal can be considered as a plasma.

For some plasmas collisions are in the observed time frame negligible and we can describe
the dynamic with the time-reversible Vlasov equation. This Vlasov equation has many so-
lutions constant in space and time and we are interested in how the plasma reacts to small
perturbations.

In some cases, most notable in the case of a Maxwell distribution, we find Landau damping,
i.e. perturbations seems to decay. This is an exciting phenomena of plasma physics, since it
shows how damping of a wave can occur without dissipation, e.g. collisions. Like the theoretical
prediction of electromagnetic waves by Maxwell which were only later experimentally found
by Hertz, this is an example how admirable mathematical analysis leads to remarkable new
results in physics.

A condition when a solution constant in time and space is stable under perturbations
following the linearised equation is the Penrose stability criterion. Up to the boundary case it
is a sharp criterion, i.e. otherwise there exist growing modes.

This essay aims to give a mathematical and physical self-contained treatment of linear
Landau damping. We will roughly follow the historical development and see the collective effort
from different people. However, most care is taken of a consistent and logical development.
Furthermore, we give a careful mathematical discussion.

After a historical overview in section 2 we will proceed with the physical modelling in sec-
tion 3 where we will ignore collisions, magnetic fields and use the electrostatic approximation.
The notation used is summarised in appendix A which should be sufficient for readers not in-
terested in the physical modelling in section 3. Then we will treat linearised Landau damping
in section 4 where we will use general mathematical results which are discussed in section 5. In
the physical modelling (section 3) we proceed purely formally. However, the results of section 4
and section 5 are fully proved.

Mathematically, we rewrite the initial value problem into a Volterra equation using the
Duhamel principle and then derive stability results. Readers who are interested in the mathe-
matical development could read section 5 first and then appendix A and section 4.

2 Historical Overview

In the late 19th century Boltzmann and Maxwell developed the kinetic theory of gases. Boltz-
mann was able to give an explanation with his famous H-Theorem how collisions generate
entropy forcing the system towards the thermal equilibrium. However, the idea of atoms was
still controversial. Furthermore, the idea of physics at this time was mostly about deterministic
laws. For example Planck first rejected Boltzmann’s probabilistic interpretation of the second
law of thermodynamics and tried to give a deterministic formulation, cf. [9].

Later on, attempts were made to apply these results to electron gases (an example of a
plasma). Landau [13] in 1936 used Debye screening to explain collisions with Coulomb’s law.

In 1938, Vlasov recognised that collective effects are essential and that there is a physical
meaningful regime in which collisions can be neglected. With a naive normal mode analysis
in the linearised case he also showed that a plasma can carry waves. A later english reprint is
[27].

In 1946, Landau [14] pointed out that this analysis is insufficient and solved the linearised
problem using Laplace transformation. For perturbations around the Maxwell distributions he
showed his famous Landau damping.

In 1960, Oliver Penrose [20] gave a stability criterion, i.e. for which distribution perturba-
tions following the linearised dynamic are bounded and related this to the marginal distribution.
He also gave a different proof for stability where he quoted a general result on the solution of
the Volterra equation. In the same year a rigorous treatment of linearised Landau damping
was given by Backus [1] who justified the use of Laplace transformation and pointed out the
limit of linearisation.
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In 1964, one of the earliest experimental verification was published in [30] using ion acoustic
waves which consist of ions and electrons moving in phase.

In 2011, Mouhot and Villani [17] proved a theorem for non-linear Landau damping and
found a different proof of linear Landau damping which also makes a more quantitative state-
ment about the decay.

3 Physical Model of a Plasma

This section develops the physical motivation to study the Vlasov equation. We therefore

proceed formally. Also we will use the notation ∂f(x,y)
∂x for a partial derivative with respect to

the first variable at the point (x, y).
A brief summary of the required notation for the later sections is given in appendix A.

3.1 Introduction to Collision Free Plasmas

A plasma is a state of matter with freely moving particles of which some are charged (ionised).
As an example we can consider (nearly) free electrons in a metal. Another possibility to create
a plasma is to heat up a gas sufficiently so that the thermal energy is high enough to ionise a
portion of the gas atoms. We can also supply the ionisation energy by a high voltage applied
to the gas as used for fluorescent lamps [12].

Having charged particles, the plasma particle interact through the strong electromagnetic
force (e.g. between two electrons the Coulomb force is 1042 times stronger than gravity, between
two single ionised Nitrogen molecules N2 it is 1034 times stronger). Also the plasma is subject
to magnetic fields yielding to beautiful effects like aurora borealis or solar flares.

In this essay we will restrict ourself to collision free plasmas with the electrostatic approxi-
mation for the interaction between the particles and only develop the kinetic theory necessary
to discuss Landau damping. A theoretical overview of plasma physics may be found in [23].
Introductions more focused on astrophysical applications are [5, 22].

3.2 Finding Collective Effects – Levels of Description

Today the most fundamental description of a physical system is believed to be quantum me-
chanics. However, the de Broglie wavelength is so small compared to the average distance
between two particles in a plasma that we expect to be able to describe the dynamics of the
particles with Newtonian mechanics. Combined with Maxwell’s equations and a model about
collisions (e.g. hard spheres) we can in principle formulate the equations of motion and try to
solve them.

Recalling Avogadro’s number (≈ 1021) for the typical number of atoms in macroscopic
systems, we see that this in infeasible. Also we can only observe collective phenomena and not
single particle of a plasma. Thus we change the level of description for collective effects. An
often encountered model is the continuum model used in fluid mechanics where we describe
the system with smooth fields of velocity, density, etc. and use the Navier-Stokes equation (or
some modification) to predict the dynamics.

In between we will develop the kinetic theory or mesoscopic dynamics. Here we will still
think about particles, but not ask for their individual dynamic. Rather we will ask how many
particles are in some position and velocity range.

3.3 Newtonian Description as Starting Point

In order to derive the kinetic theory we start with Newtonian mechanics. Let p and q be
the canonical conjugate position and momentum, i.e. in our case without magnetic field p =
(p1, p2, . . . pN ) and q = (q1, q2, . . . qN ) with qi = mivi where pi is the position (in cartesian
coordinates), vi the velocity, and mi the mass of the ith particle. The phase space Γ is the joint
vector space of position and momentum so that a point (p,q) fully describes the system and
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we write X = (p,q). Then in Hamilton’s formulation the dynamic of the system X = (p,q) is
given by

ṗ :=
∂p

∂t
=
∂H(p,q)

∂q
, q̇ :=

∂q

∂t
= −∂H(p,q)

∂p
(3.1)

where H(p,q) is the Hamiltonian which is a constant of motion. The value of the Hamiltonian
is interpreted as the energy of the system.

In our case

H(p,q) =
1

2

N∑
i=1

p2i
mi

+

N∑
i=1

eiψ(qi) +

N∑
i=1

i−1∑
j=1

ψij(qi, qj) (3.2)

where ei is the charge of the ith particle, ψ is the external electric potential and ψij is the inter-
action energy which is symmetric (i.e. ψij(qi, qj) = ψji(qj , qi)) and given in the electrostatic
approximation by Coulomb’s law

ψij(qi, qj) =
eiej
|qi − qj |

(3.3)

where we choose the unit of charge such that 4πε = 1. The first sum (1/2)
∑N
i=1 p

2
i /mi is the

kinetic energy while the other terms are the potential energy.

3.4 Evolution of a Distribution of States – Liouville Equation

We now suppose we have a distribution FN (t,p,q) of states. In statistical physics we think of
an ensemble of systems where each system evolves independently in time and FN (t,p,q)dpdq
describes the proportion of systems with position in [p,p + dp] and momentum in [q,q + dq]
at time t.

Assuming that each system evolves continuously, we impose for each volume V in the phase
space Γ

∂

∂t

∫
V

FN (t,X)dV +

∮
δV

FN (t,X)Ẋ · ds = 0 (3.4)

where X = (p,q), Ẋ = ∂X
∂t , and ds is the surface element pointing outwards. Using Gauss law

we find
∂

∂t

∫
V

FN (t,X)dV +

∫
V

∇ · (FN (t,X)Ẋ)dV = 0. (3.5)

Since this holds for all V we conclude the continuity equation

∂FN (t,X)

∂t
+∇ · (FN (t,X)Ẋ) = 0. (3.6)

By Hamilton’s equations of motion

∇ · Ẋ =

N∑
i=1

(
∂ṗi
∂pi

+
∂q̇i
∂qi

)
=

N∑
i=1

(
− ∂

∂pi

∂H(p,q)

∂qi
+

∂

∂qi

∂H(p,q)

∂pi

)
= 0 (3.7)

which corresponds to an incompressible fluid in phase space.
Putting it together we find Liouville’s equation

0 =
∂FN (t,X)

∂t
+

N∑
i=1

(
ṗi
∂FN (t,X)

∂pi
+ q̇i

∂FN (t,X)

∂qi

)

=
∂FN (t,X)

∂t
+

N∑
i=1

(
−∂H(p,q)

∂qi

∂FN (t,X)

∂pi
+
∂H(p,q)

∂pi

∂FN (t,X)

∂qi

) (3.8)

where the sum is also denoted with the Poisson bracket {FN , H} so that it takes the form
expected from classical mechanics for a conserved quantity.
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Another approach comes from Liouville’s theorem. Let S(t2, t1) be the time evolution
operator from time t1 to t2, i.e. X(t) = S(t, t1)X is a solution of the equations of motion
and X(t1) = X. Then look at the Jacobian J(t) of S(t, t1). Clearly J(t1) = 1 and with
X(t) = (p(t),q(t))

∂J

∂t

∣∣∣∣
t1

=
∂

∂t
det

(
∂p(t)
∂p

∂p(t)
∂q

∂q(t)
∂p

∂q(t)
∂q

)∣∣∣∣∣
t1

=
∂

∂p

(
∂p

∂t

)
t1

+
∂

∂q

(
∂q

∂t

)
t1

=
∂2H(p,q)

∂p∂q
− ∂2H(p,q)

∂q∂p
= 0

(3.9)

where we used that the matrix

(
∂p(t)
∂p

∂p(t)
∂q

∂q(t)
∂p

∂q(t)
∂q

)
is the identity matrix at t1. As the evolution

operator combines as S(t2, t)S(t, t1) = S(t2, t1) this result extends to ∂J
∂t = 0 for all t. Hence

J(t) = 1 for all t, which is Liouville’s theorem. Therefore, we expect FN to be constant along
a solution of the equations of motion which is exactly the content of Liouville’s equation using
the method of characteristics.

3.5 Evolution of Marginal Distributions – BBGKY Hierarchy

The Liouville equation still contains the same complexity and amount of information as a
Newtonian description. In order to reduce the complexity we suppose that we have N identical
particles each with mass m and charge e and that the particles are indistinguishable, i.e.
their distributions are symmetric. This means that for any function g : R3N → R and any
permutation ε of {1, 2, . . . , N} holds∫

g(t,x1,v1, . . . ,xN ,vN )dx1dv1 . . . dxNdvN

=

∫
g(t,xε(1),vε(1), . . . ,xε(N),vε(N))dx1dv1 . . . dxNdvN .

(3.10)

and for i 6= j holds
ψ12 = ψij . (3.11)

Considering the distribution FN (t,x1,v1, . . . ,xN ,vN ) with respect to the position xi and
velocity vi of the ith particle, we reduce for n ≤ N to the n particle distribution or marginal
distribution.

f (n)(t,x1,v1, . . . ,xn,vn) =

∫
FN (t,x1,v1, . . . ,xN ,vN )dxn+1dvn+1 . . . dxNdvN . (3.12)

By integrating Liouville’s equation over dxn+1dvn+1 . . . dxNdvN we find the dynamic equa-
tion for f (n). We still proceed formally and impose that the physical solutions are sufficiently
regular. In our case with the Hamiltonian as in eq. (3.2) we find for the first term∫

∂FN (t,x1,v1, . . . ,xN ,vN )

∂t
dxn+1dvn+1 . . . dxNdvN =

∂

∂t
f (n)(t,x1,v1, . . . ,xn,vn). (3.13)

For the second term we find∫ N∑
i=1

(
−∂H(x1, . . . ,xN ,v1, . . . ,vN )

∂xi
· 1

m

∂FN (t,x1,v1, . . . ,xN ,vN )

∂vi

)
dxn+1dvn+1 . . . dxNdvN

= −
N∑
i=1

∫  e

m

∂ψ(xi)

∂xi
+
∑
j 6=i

1

m

∂ψij(xi,xj)

∂xi

 · ∂FN (t,x1,v1, . . . ,xN ,vN )

∂vi
dxn+1dvn+1 . . . dxNdvN .

(3.14)
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For i ≥ n+ 1 the integral
∫ ∂FN (t,x1,v1,...,xN ,vN )

∂vi
dvi vanishes since FN (t,x1,v1, . . . ,xN ,vN ) is

a probability distribution. Hence the sum reduces to i = 1, . . . , n. Let

H(n)(x1, . . . ,xn,v1, . . . ,vn) =
m

2

n∑
i=1

v2
i +

n∑
i=1

eψ(xi) +

n∑
i=1

i−1∑
j=1

ψij(xi,xj), (3.15)

then we can write the term as

n∑
i=1

(
−∂H

(n)(x1, . . . ,xn,v1, . . . ,vn)

∂xi
· 1

m

∂f (n)(t,x1,v1, . . . ,xn,vn)

∂vi

)

−
∫ n∑

i=1

N∑
j=n+1

1

m

∂ψij(xi,xj)

∂xi
· ∂FN (t,x1,v1, . . . ,xN ,vN )

∂vi
dxn+1dvn+1 . . . dxNdvN .

(3.16)

By the symmetry of the particles the remaining integral is

(N − n)

n∑
i=1

∫
1

m

∂ψi,n+1(xi,xn+1)

∂xi
· ∂f

(n+1)(t,x1,v1, . . . ,xn+1,vn+1)

∂vn+1
dxn+1dvn+1. (3.17)

Finally the last term is∫ N∑
i=1

(
1

m

∂H(x1, . . . ,xN ,v1, . . . ,vN )

∂vi
· ∂FN (t,x1,v1, . . . ,xN ,vN )

∂xi

)
dxn+1dvn+1 . . . dxNdvN

=

∫ N∑
i=1

vi
∂FN
∂xi

dxn+1dvn+1 . . . dxNdvN

=

n∑
i=1

vi
∂f (n)(t,x1,v1, . . . ,xn,vn)

∂xi

=

n∑
i=1

1

m

∂H(n)(x1, . . . ,xn,v1, . . . ,vn)

∂vi
· ∂f

(n)(t,x1,v1, . . . ,xn,vn)

∂xi
.

(3.18)

Collecting the terms we arrive at the BBGKY hierarchy [21, 23] (named after Bogoliubov,
Born, Green, Kirkwood, and Yvon)

∂

∂t
f (n)(t,x1,v1, . . . ,xn,vn) +

n∑
i=1

(
−∂H

(n)(x1, . . . ,xn,v1, . . . ,vn)

∂xi
· 1

m

∂f (n)(t,x1,v1, . . . ,xn,vn)

∂vi

+
1

m

∂H(n)(x1, . . . ,xn,v1, . . . ,vn)

∂vi
· ∂f

(n)(t,x1,v1, . . . ,xn,vn)

∂xi

)
= (N − n)

n∑
i=1

∫
1

m

∂ψi,n+1(xi,xn+1)

∂xi
· ∂f

(n+1)(t,x1,v1, . . . ,xn+1,vn+1)

∂vi
dxn+1dvn+1.

(3.19)

Hence the n particle distribution dynamic depends on the n + 1 particle distribution dy-
namic giving a hierarchy. Therefore, to find a closed form of the dynamic for the one particle
distribution we need to make some further assumption.
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3.6 Evolution of the One Particle Distribution – Vlasov Equation

In case of the one particle distribution the BBGKY hierarchy simplifies (relabelling the dummy
integration variables x2 and v2 as y and w) to

∂f (1)(t,x,v)

∂t
− e

m

∂ψ(x)

∂x
· ∂f

(1)(t,x,v)

∂v
+ v · ∂f

(1)(t,x,v)

∂x

= (N − 1)

∫
1

m

∂ψ12(x,y)

∂x
· ∂f

(2)(t,x,v,y,w)

∂v
dydw.

(3.20)

Already in 1872 Ludwig Boltzmann [4, Equation 44] found this equation for gas particles
where the RHS is replaced by a collision term which he justified more heuristically. From the
structure of the BBGKY hierarchy we see that the key ingredient for a closed form of f (1)

is to make some assumption about f (2) in terms of f (1). The simplest assumption would be
f (2) = f (1) ⊗ f (1) which yields for the RHS with Coulomb interaction ψ12(x,y) = e2 |x− y|−1

(N − 1)

∫
1

m

∂

∂x

(
e2

|x− y|

)
· ∂
∂v

(
f (1)(t,x,v)f (1)(t,y,w)

)
dydw

=
e

m

∂f (1)(t,x,v)

∂v
· (N − 1)

∂

∂x

(∫
e

|x− y|
f (1)(t,y,w)dydw

)
=

e

m

∂f (1)(t,x,v)

∂v
· ∂φi(t,x)

∂x

(3.21)

where φi(t,x) = (N−1)
∫

e
|x−y|f

(1)(t,y,w)dydw which we recognise from electrostatics as the

mean electric potential created by the other particles. It is equivalently described by Gauss’s
law

∇2φi(t,x) = −4πe(N − 1)

∫
f (1)(t,x,v)dv (3.22)

which is just the fact that the Laplace equation has the fundamental solution −(4πr)−1. Hence
we find the mean field limit where one particle only notices the average of the other particles.

Strictly speaking f (2) = f (1) ⊗ f (1) cannot hold since when two particles approach each
other the Coulomb force repels them and at some point they collide. Note that however, for
a plasma the number of particles is very large and even localised measurements involve many
particles.

Hence we consider the limit N → ∞ which is called the thermodynamic limit. This limit
can be thought of as changing the length scale so that a plasma confined in a unit volume
becomes a plasma with an increasing number of particles. Mathematically this is the same
limit as breaking down each particle into several sub-particles. Hence Ne and Nm should
remain constant which implies that m−1ψ12(x,y) scales as N−1 balancing the (N-1) in the
RHS of the BBGKY hierarchy for one particle in eq. (3.20).

The marginal distributions also depend on N and we explicitly write f (n),N for the n
particle distribution of a N particle system. In the thermodynamic limit N → ∞ we now
consider

f (n),∞ = lim
N→∞

f (n),N . (3.23)

In this limit Boltzmann postulated molecular chaos

f (2),∞ = f (1),∞ ⊗ f (1),∞ (3.24)

and considered for large N collisions to derive his dynamical equation which drives the system
to the thermal equilibrium and introduces a direction of time (H-Theorem).

Vlasov [27] however noted that for some systems collisions are so rare for the observed time
frame that they can be neglected. Physically, we suppose that the number of particles N is so
large that this limit already holds

f (2),N ∼ f (1),N ⊗ f (1),N . (3.25)
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This is called the mean field limit, because every particle moves as it would only experiences
the average of the other particles.

Let f(t,x,v) be the density of particles in phase space, i.e. f(t,x,v)dxdv is the number of
particles with position in [x,x + dx] and velocity in [v,v + dv]. This relates to the previously
considered case with finitely many particles as f(t,x,v) = Nf (1),N (t,x,v). We consider a
distribution with

∫
f(t,x,v)dxdv = ∞ as limit case of a large confining box, so that we can

have a spatial homogeneous distribution. Otherwise, we may introduce a length scale L and
apply periodic boundary conditions we take the space to be a torus TdL = Rd/LZd of side
length L, i.e. [0, L]d with opposite sites identified.

Finally, we assume that the external potential ψ is created by a background charge distri-
bution ρb and independent of time1,i.e.

∇2ψ(x) = −4πρb(x). (3.26)

Then the mean field limit is the Vlasov equation

∂f(t,x,v)

∂t
+ v · ∂f(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f(t,x,v)

∂v
= 0 (3.27)

∇2φ(t,x) = −4π

(
ρb + e

∫
f(t,x,v)dv

)
(3.28)

or with the electric field E = −∇φ we can replace the second equation with

∇ ·E(t,x) = 4π

(
ρb + e

∫
f(t,x,v)dv

)
. (3.29)

This mean field is the electric field we would measure if we take a macroscopic measurement
of the electric field.

If we would have different kind of particles, we use greek indices. So let fα, mα, eα
respectively the phase space density, mass, and charge for the particles of kind α. By the same
argument [23, Chapter 4] we get

∂fα(t,x,v)

∂t
+ v · ∂fα(t,x,v)

∂x
− eα
mα

∂φ(t,x)

∂x
· ∂fα(t,x,v)

∂v
= 0 (3.30)

∇2φ(t,x) = −4π

(
ρb +

∑
α

eα

∫
fα(t,x,v)dv

)
. (3.31)

Since we only consider electric interaction, we can ignore neutral particles in this discussion.
In the following analysis the results of one kind of particle easily extends to the case of several
kinds of particles. For better readability and clearer discussion we will therefore do most
discussions for one kind of (ionised) particle.

From statistical physics an important length scale is the Debye length

λD =

√
kBT

4πne2
. (3.32)

where n(t,x) =
∫
f(t,x,v)dv is the space density of particles, T is the temperature and kB is

the Boltzmann constant. The main thermal velocity is

vt =

√
kBT

m
(3.33)

which allows the definition of the plasma frequency

ωp =
vt
λD

=

√
m

4πne2
. (3.34)

1This ensures that the Hamiltonian of the system is time independent. Hence by Noether’s theorem the
total energy is conserved.
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Vlasov [27] estimated the effect of collisions using the earlier work of Landau [13] showing that
for the ionosphere (the system he considered) collisions are negligible. A brief summary is
given in [23, Chapter 1] which shows that the ratio of collective effects to individual effects is
roughly proportional to the plasma parameter Λ = 4π

3 nλ
3
D. Hence we consider Λ � 1 or the

limit Λ→∞.
Another approach is the averaging of the Klimontovich equations. This is extensively used

in [22] and clearly described in [23, Chapter 4], whose discussion we will repeat here.
We start by considering the exact distribution function F or empirical measure for the

system with N particles given by

F (t,x,v) =

N∑
i=1

δ(x− xi(t))δ(v − vi(t)). (3.35)

where xi and vi are the position respectively the velocity of the ith particle.
The particles follow the exact equation of motion

dxi(t)

dt
= vi(t)

dvi(t)

dt
=

e

m
E(t,xi) = − 1

m

∑
j 6=i

∇ψij(xi,xj)
(3.36)

where E(t,xi) is the electric field.
We can calculate

∂F (t,x,v)

∂t
+ v · ∂F (t,x,v)

∂x
+

e

m
E(t,x) · ∂F (t,x,v)

∂v

=

N∑
i=1

[(
v − dxi

dt

)
δ′(x− xi(t))δ(v − vi(t)) +

(
e

m
E(t,x)− dvi

dt

)
δ(x− xi(t))δ

′(v − vi(t))

]
.

(3.37)

Assuming that every particle has a different position in phase space, this is vanishing if and
only if the equations of motions are satisfied. Hence equivalently we can impose

∂F (t,x,v)

∂t
+ v · ∂F (t,x,v)

∂x
+

e

m
E(t,x) · ∂F (t,x,v)

∂v
= 0. (3.38)

Now suppose we have some averaging procedure, e.g. considering an ensemble of systems,
which we can mathematically express as measure in the phase space. Using this average we
can split F into a mean distribution f = 〈F 〉 and a deviation δF

F = f + δF (3.39)

where we impose 〈δF 〉 = 0. From the superposition principle we can accordingly split the
electric field

E = 〈E〉+ δE. (3.40)

Averaging the dynamic equation we find

∂f(t,x,v)

∂t
+ v · ∂f(t,x,v)

∂x
+

e

m
〈E〉 · ∂f(t,x,v)

∂v
= − e

m

〈
δE · ∂δF (t,x,v)

∂v

〉
(3.41)

where the LHS is the Vlasov equation and the RHS is the neglected collision term. For an
estimation of the collision term, consider the gedankenexperiment(“thought experiment”) of
breaking each particle into sub-particles and the limit N →∞ with

Ne = const, Nm = const, vt = const. (3.42)
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Then e/m remains constant, the temperature T grows as N , and the Debye length λD stays
constant.

From general statistics we expect δF ∼ N1/2 and by the electrostatic solution

δE(t,x) =

∫
(x− y)

|x− y|3
e δF (t,y)dy (3.43)

also δE ∼ N−1/2. Hence the RHS stays at the same order of magnitude. However, the LHS
grows as N . Therefore, in the limit N → ∞ which corresponds to Λ ∼ N → ∞ the RHS is
negligible.

3.7 Statistical Mechanics for Comparison

In statistical mechanics and thermodynamics we consider systems in equilibrium and the evo-
lution is towards this equilibrium which defines a direction of time. Boltzmann’s H-Theorem
shows that collisions are the driving mechanism for this time irreversible evolution towards
equilibrium. In the Vlasov equation however, we are interested in a time scale where collisions
are negligible and we have a time reversible equation. Therefore, we cannot apply thermody-
namic arguments and the entropy is constant [3, Appendix A].

Assuming some collisional effects we would find the system in the thermal equilibrium at
the spatial homogeneous Maxwell distribution

f(v) = n

√
m

2πkBT
e
− mv2

2kBT . (3.44)

At temperature T the mean velocity is

vt =

√
kBT

m
. (3.45)

Another effect is the Debye screening. Intuitively charged particles repels equally charged
particles and attracts oppositely charged particles compensating its own field. Precisely for-
mulated as Debye screening, the effective potential at distance r is (e/r)e−r/λD where λD =√
kBT/(4πne2) is the Debye length.

3.8 Electron Gas as Common Example

A common theoretical example for a collision free plasma is the electron gas where we have
freely moving electrons and ions as in a simple model for metals. Since the metal is overall
neutral we have in average the same density n of ions and electrons. Due to their much heavier
mass the ions can be assumed stationary for high frequency movements and we can approximate
the effect of the ions as constant background potential, leaving us with the dynamical equation
of the electron distribution.

4 Linearised Landau Damping

With this model of a collision free plasma the evolution becomes a mathematical problem
described by the Vlasov equation, which we want to solve. In this essay we ask what happens
to a constant solution of the Vlasov equation if we perturbe it. In order to solve this problem we
linearise the Vlasov equation around the constant solution which was already done in Vlasov’s
first paper from 1938. Landau formally solved the problem and found the remarkable result
that around the Maxwell distribution perturbations are damped which we now call Landau
damping. In this section we will prove this result and develop the Penrose criterion when
perturbation are not growing. For this we need results from mathematical analysis which will
be developed in section 5.
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Without external fields and boundary conditions, any spatial homogenous density f0(v)
with cancelling background charge ρb =

∫
f(t,v)dv is a time-independent solution of the

Vlasov equation because then φ = 0 and ∂f0
∂x = 0. This again shows the difference to the

kinetic equation with collisions, where we have an increasing quantity, the entropy, with unique
maximum.

4.1 Linearisation

We are now asking what happens if we have a small perturbation f1(t,x,v) around a constant
density2 f0(v), i.e. we suppose the density f(t,x,v) = f0(v) + f1(t,x,v) satisfies Vlasov’s
equation and look at the evolution of f1(t,x,v). Assuming neutrality ρb = −e

∫
f(t,x,v)dx

we find

∂f1(t,x,v)

∂t
+ v · ∂f1(t,x,v)

∂x
− e

m

∂φ

∂x

(
∂f0(v)

∂v
+
∂f1(t,x,v)

∂v

)
= 0, (4.1)

∇2φ = −4πe

∫
f1(t,x,v) dv. (4.2)

For a small perturbation f1 � f0 and ∂f1
∂v �

∂f0
∂v we then look at the linearised Vlasov

equation
∂f1(t,x,v)

∂t
+ v · ∂f1(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f0(v)

∂v
= 0, (4.3)

∇2φ(t,x) = −4πe

∫
f1(t,x,v)dv. (4.4)

Similar for several kind of particles we find

∂f1α(t,x,v)

∂t
+ v · ∂f1α(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f0α(v)

∂v
= 0, (4.5)

∇2φ(t,x) =
∑
α

−4πeα

∫
f1α(t,x,v)dv. (4.6)

As Backus [1] noted there is no dissipative term, so that we cannot justify a priori a
linearised treatment and we can observe non-linear effects like filamentation. This question
remained open until in 2011 Mouhot and Villani could answer the non-linear case.

4.2 Naive Normal Modes

By separation of variables Vlasov [27] motivated the ansatz f1(t,x,v) = c(v)eik·x−iωt. From
the fundamental solution for φ, we see that φ is proportional to eik·x−iωt. The linearised
equations become

(−iω + ik · v)f1(t,x,v)− e

m

∂φ

∂x
· ∂f0(v)

∂v
= 0 (4.7)

and

−k2φ = −4πe

∫
f1(t,x,v)dv. (4.8)

Hence formally we have a solution if

k2 =
4πe2

m

∫
k · ∂f0(t,x,v)∂v

k · v − ω
dv. (4.9)

Choosing the x-axis along k, we can absorb the constant into the (unperturbed) plasma
frequency ωp =

√
4πne2/m with the (unperturbed) density n =

∫
f0(v)dv and rewrite the

condition as

k2 =

∫ ∞
−∞

ω2
pg0(u)

u− ω/k
du (4.10)

2This should not be confused with the initial distribution of the perturbation which we will denote fin.
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where k = |k| and

g0(u) =
1

n

∫
f0(u, vx, vy)dvxdvy. (4.11)

The mode k = 0 corresponds to a shift of density violating overall neutrality, so that we
assume k 6= 0. Also the perturbation is everywhere small only if k is real.

If ω is real, the denominator u−ω/k has a pole. However, for complex ω with <(ω) 6= 0 we
have a valid solution if the condition holds and we can have a perturbation with this frequency.

Beside the potential pole, the more serious problem is that this is not a proper dispersion
relation. As in [23, Chapter 4] consider for example

f0(v) = δ(vx − u1) + δ(vx − u2) + δ(vx − u3) + δ(vx − u4) (4.12)

then ∫ ∞
−∞

ω2
pg0(u)

u− ω/k
du = ω2

p

(
1

u1 − ω/k
+

1

u2 − ω/k
+

1

u3 − ω/k
+

1

u4 − ω/k

)
(4.13)

thus considered as function of ω this has four poles. Hence for all k, there exist at least four
possible frequencies. This shows that there is more than one frequency in contrast to a proper
dispersion relation.

This contrast comes from the fact that we found only an implicit non-linear integral equation
for ω and is mathematically not surprising. However, this differs from common normal mode
analysis in physics. This analysis by Vlasov in 1938 already shows that the spatial Fourier
modes decouple which is the key ingredient to all further progress.

4.3 Landau’s Solution

In 1946, Landau [14] pointed out the insufficiency of the previous analysis by Vlasov whose main
problems are that it is unclear what the divergent integrals mean, whether all perturbations
have this form, and which frequency to choose. Landau noted that this relates to the fact
that we actually want to know the evolution of an initial distribution and therefore should
consider it as an initial value problem or Cauchy problem. He proceeded by formally solving
this initial value problem and then applied his solution to perturbations around the Maxwell
distribution where he showed his Landau damping. We will repeat his formal discussion to
motivate Penrose’s argumentation. Furthermore, Backus [1] showed that it is possible to do
this discussion rigorously without principle trouble as discussed in section 4.6.

We assume that f1 and φ have a Fourier transformation in space. In physics this is almost
always assumed and, since a sufficient condition already is integrability, this is physically
reasonable.

The linearised Vlasov equation is homogeneous in f1 and only depends on the spatial
position x through the perturbation f1 (recall that f0 only depends on v). Hence the Fourier
modes separate.

After Fourier transformation with

f̂1(t,k,v) =

∫
f1(t,x,v)e−ik·xdx (4.14)

φ̂(t,k) =

∫
φ(t,x)e−ik·xdx (4.15)

the linearised Vlasov equation becomes

∂f̂1(t,k,v)

∂t
+ ik · vf̂1(t,k,v)− φ̂(t,k)

eik

m
· ∂f0
∂v

= 0, (4.16)

−k2φ̂(t,k) = −4πe

∫
f̂1(t,k,v)dv. (4.17)
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We can now consider how one mode evolves, so we fix some k, choose the x-axis along k
and drop the explicit dependence on k. We thus write without hat

∂f1(t,v)

∂t
+ ikvxf1(t,v)− iφ(t)

ke

m

∂f0(v)

∂vx
= 0, (4.18)

k2φ(t) = 4πe

∫
f1(t,v)dv. (4.19)

Then we apply the Laplace transformation in time to solve the problem. As we will later
see in section 4.5, the equations can be written as Volterra equation using Duhamel’s principle
which explains why a Laplace transformation works. Denote the Laplace transform as

f̃1(p,v) =

∫ ∞
0

f1(t,v)e−ptdt, (4.20)

φ̃(p) =

∫ ∞
0

φ(t)e−ptdt. (4.21)

Integrating the linearised mode equations yields

−fin(v) + pf̃1(p,v) + ikvxf̃1(p,v)− iφ̃(p)
ke

m

∂f0(v)

∂v
= 0, (4.22)

k2φ̃(p) = 4πe

∫
f̃1(p,v)dv (4.23)

where fin(v) = f1(0,v) is the initial datum. Solving the first equation for f̃1(p,v) gives

f̃1(p,v) =
fin(v) + iφ̃(p)kem

∂f0(v)
∂vx

p+ ikvx
. (4.24)

For φ̃(p) we find

φ̃(p) =
4πe

k2

(∫
fin(v)

p+ ikvx
dv +

ike

m
φ̃(p)

∫
∂f0(v)

∂vx

dv

p+ ikvx

)
. (4.25)

Hence

φ̃(p) =
4πe

k2

∫ fin(v)
p+ikvx

dv

1− i 4πe2k2m

∫ ∂f0(v)
∂vx

dv
p+ikvx

. (4.26)

Solving the trivial integration in y and z direction, we find

φ̃(p) =
4πe

k2

∫∞
−∞

gin(u)
p+ikudu

1− ω2
p

k

∫∞
−∞

dg0(u)
du

du
ku−ip

(4.27)

where with unperturbed density n =
∫
f0(v)dv

gin(u) =

∫
fin(u, vy, vz)dvydvz, (4.28)

g0(u) =
1

n

∫
f0(u, vy, vz)dvydvz. (4.29)

Proceeding formally as Landau we use the complex inversion formula to find

φ(t) =
1

2πi

∫ i∞+σ

−i∞+σ

φ̃(p)eptdp (4.30)

where σ is a large enough positive number.
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His idea is to use that φ̃(p) is analytic in some right half plane and thus can be continued
analytically to the complex plane with possible poles p1, p2, . . . . Then we move the contour
γ of integration as shown in fig. 1. Written explicitly where p1, p2, . . . pk are the poles with
σ0 < <(pi) < σ and −M < =(pi) < M we have

φ(t) =
1

2πi

(∫ −iM+σ

−i∞+σ

+

∫ −iM+σ0

−iM+σ

+

∫ iM+σ0

−iM+σ0

+

∫ iM+σ

iM+σ0

+

∫ i∞+σ

iM+σ

)
φ̃(p)eptdp+

k∑
i=1

epitRespi φ̃.

(4.31)

<p

=p

σ

γ1

γ2

p1

p2

p3

p4

γ3

−iM

iM

σ0

Figure 1 – Deformed contour γ for the integral in p defining φ by inverse Laplace transformation.
γ1 and γ3 are the horizontal paths and γ2 is the vertical part with <p = σ0. The picture has been
adapted from [23, Chapter 4].

As we take M →∞, we suppose that the contribution along the line =(p) = σ vanishes as
we suppose that the integral is convergent. We further suppose that the contribution from the
horizontal paths γ1 and γ3 vanishes. Hence

φ(t) =
1

2πi

∫ i∞+σ0

−i∞+σ0

φ̃(p)eptdt+
∑
i

epitRespi φ̃. (4.32)

Therefore the long time behaviour is dominated by a contribution growing with epkt where pk
is the pole with largest real part.

Already if gin is integrable or square integrable, the integral
∫∞
−∞

gin(u)
p+ikudu is analytic in the

region with <(p) > 0. For p with <(p) ≤ 0 it can easily be continued as analytic function by
changing the contour γ with Landau’s prescriptions as shown in fig. 2.

<p

=p

ip
k

Figure 2 – Landau’s prescription for changing the contour of the integral over gin/(p+ iku) in
u ∈ R if <p ≤ 0. The figure has been adapted from [14].
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The integral in the denominator can be analytically continued in the same way, so that the
only remaining poles are solutions of

1−
ω2
p

k

∫
dg0(u)

du

du

ku− ip
= 0 (4.33)

where the u integral is to be done with Landau’s prescription. This is beside the contour
prescription the dispersion relation eq. (4.10) found earlier, since the Laplace variable p corre-
sponds to −iω where ω is the frequency.

From this point of view it becomes more convenient to consider the Laplace transformation
as function of s = ip/k which takes a right half plane into an upper half plane. The long time
frequency ω therefore is the solution with largest =(ω) of

k2 = Z(s) (4.34)

where s = ω/k and

Z(s) = ω2
p

∫
dg0(u)

du

du

u− s
. (4.35)

Having solved φ̃, we can find the solution of f̃1 which has a pole at ikvx. Hence f1 also
has a term fin(v)eikvxt. So there is no damping if we consider the velocity distribution.
This illustrates how the damping of the electric field without dissipation happens. The full
distribution f1 does not decay but oscillates more quickly at later times. As the electric
potential involves the averaging

∫
f1(t,v)dv, it is decaying by the Riemann-Lebesque lemma

if fin is integrable.
The rigorous treatment needs to address the various convergence issues. In particular as

Backus [1] pointed out, the condition that a function f has an analytic Laplace transformation
for the right half plane <(p) ≥ σ0 is not sufficient to conclude that f grows at most by eσ0t.

For this we can consider the example from Widder [29] with the function f : R+ → R given
by

f(t) = et sin(et). (4.36)

For p with <(p) > 1 the Laplace integral is absolutely convergent and thus defines an
analytic function for <(p) > 1. By substituting x = et we find

f̃(p) :=

∫ ∞
0

e−ptf(t)dt =

∫ ∞
1

sin(x)

xp
dx. (4.37)

By partial integration we find for <(p) > 1

f̃(p) =

[
−cos(x)

xp

]∞
1

− p
∫ ∞
1

cos(x)

xp+1
dx = cos(1)− p

∫ ∞
1

cosx

xp+1
dx. (4.38)

However, the RHS also defines an analytic function for <(p) > 0 and we can continue to
conclude that f has a Laplace transformation which is an entire function.

This shows that convergence really can be a problem. In our case it has been solved in [1].
Beside this the main assumptions are that the distribution have a Fourier transformation and
that they have a Laplace transformation, i.e. are exponentially bounded.

4.4 Penrose Criterion for Stability

In 1960, Penrose [20] used the argument principle to formulate a criterion in order to know
when exponentially growing modes exist, i.e. when there exist real k > 0 and frequencies ω
with =(ω) > 0 such that k2 = Z(ω/k) where the integral can be taken along the real line
as =(ω) > 0. In this case already the naive normal mode analysis shows that perturbations
can be unstable. If no such solution exists, he quoted an advanced result on the solution of
the Volterra equation to show that all sufficiently regular perturbations are stable. In the
same year Backus [1] published his rigorous treatment of Landau’s discussion where he showed
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that the stability is determined by the solutions of k2 = Z(ω/k) for =(ω) > 0 and the limit
=(ω)→ 0. Furthermore, he discusses the required stability for this conclusions.

For several kinds of particles the dispersion function Z generalises through the previous
discussion as

Z(s) =
∑
α

ω2
pα

∫
dg0α(u)

du

du

u− s
(4.39)

where the (unperturbed) densities are nα =
∫
f0α(v)dv, the (unperturbed) plasma frequencies

are

ωpα =

√
4πnαe2α
mα

(4.40)

and

g0α(u) =
1

nα

∫
f0α(u, vy, vz)dvydvz. (4.41)

Hence we introduce

h(u) = ω2
pg0(u) respectively h(u) =

∑
α

ω2
pαg0α(u) (4.42)

and we can write

Z(s) =

∫
dh(u)

du

du

u− s
. (4.43)

A solution k2 = Z(ω/k) for real k > 0 and complex ω with =(ω) > 0 exists iff there exists s ∈ C
with =(s) > 0 such that Z(s) is a positive real number. If we have a solution k2 = Z(ω/k),
then s = ω/k is such a complex number s. Conversely, let k =

√
Z(s) and ω = s/k. Hence we

need to find a criterion when Z(s) takes a positive real value for s in the upper half plane.
For the discussion of Z we introduce the operator H (cf. [1]) by

(Hf)(s) =

∫ ∞
−∞

f(u)

u− s
du. (4.44)

Inside the upper half plane we have from [20, 1] the following lemma.

Lemma 4.1. If f ∈ L1 or L2 then (Hf)(s) is an analytic function of s in the upper half plane.

Proof. Since u is real, for s in the upper half plane u− s 6= 0, so the integrand has derivative
f(u)

(u−s)2 .

If f ∈ L1 we can bound ∫ ∞
−∞

∣∣∣∣ f(u)

(u− s)2

∣∣∣∣ du ≤ ‖f‖1=(s)2
(4.45)

or if f ∈ L2 by Schwarz inequality∫ ∞
−∞

∣∣∣∣ f(u)

(u− s)2

∣∣∣∣du ≤ ‖f‖2(∫ ∞
−∞

1

(u− s)4
du

)1/2

. (4.46)

Hence, Hf is differentiable with derivative
∫∞
−∞

f(u)
(u−s)2 du.

Like Penrose we can characterize the boundary behaviour by the following lemma:

Lemma 4.2. If f ∈ L1 and f is Lipschitz continuous, then (Hf)(s) is a continuous and
bounded function of s with

(Hf)(x+ iy)→ PV

∫ ∞
−∞

f(u)

u− x
du+ iπf(x) (4.47)

uniformly over x as y → 0 + 0 where PV denotes the principle value and for s ∈ C with
=(s) ≥ 0

lim
|s|→∞

(Hf)(s) = 0. (4.48)
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Proof. We recognise the first part as Plemelj formula which we prove in section 5.5 as corol-
lary 5.25. If =(s)→∞ the second statement is obvious as∣∣∣∣∫ ∞

∞

f(u)

u− s
du

∣∣∣∣ ≤ ‖f‖1=(s)
. (4.49)

Otherwise by uniform continuity of the first part we can assume =(s) ≥ δ > 0. Since f is
Lipschitz continuous and f ∈ L1, it is bounded and f ∈ L2. Hence by Cauchy-Schwarz∫

|u|≥M

f(u)

u− s
du→ 0 (4.50)

as M →∞. For a fixed M the remaining part is bounded for large enough <(s), since∫
|u|<M

∣∣∣∣ f(u)

u− s

∣∣∣∣du ≤ ‖f‖1
|<(s)| −M

→ 0 (4.51)

as <(s)→∞, which proves the claim.

Penrose [20] only assumes f ∈ L2 and just quoted the result from [16, Chapter 3] where the
limit is stated for finite intervals. Backus [1, Lemmata 4 and 5] states the convergence under
relaxed regularity (also f ∈ L2) and different modes of convergences. This kind of operator is
also called Hilbert operator which is discussed more generally in [25, Chapter 4].

Hence if we have perturbations around a distribution with g0 differentiable with g′0 ∈ L1

and g′0 Lipschitz continuous, then Z(s) is a bounded analytic function in the upper half plane
continuous up to the boundary and vanishing at infinity with

Z(x+ i0) = PV

∫ ∞
−∞

h′(u)

u− x
du+ iπh′(x). (4.52)

By the argument principle a value Z0 not on Z(x+ i0) is taken from Z(s) for =(s) > 0 iff the
curve Z(x+ i0) has positive winding number around the value Z0 as illustrated in figs. 3 to 5
which we calculated using Mathematica.

<Z

=Z

Figure 3 – Curve of Z(x + i0) for h(u) = e−u
2/2 (Maxwell distribution, plotted in fig. 6). The

traced out area is shaded green and is the image of the upper half plane under Z. We can see
that no positive real number is in the image and thus no exponentially growing modes exist.

A point on the positive real axis can only have a non-trivial winding number if Z(x + i0)
crosses the real axis. Hence there exists a point on the real axis with positive winding number
iff Z(x+ i0) crosses the positive real axis from below. Since =(Z(x+ i0)) = πh′(x), the curve
Z(x + i0) crosses the real axis from below at the parameter x iff h has a minimum at x.
Therefore the full criterion can be formulated as
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<Z

=Z

Figure 4 – Curve of Z(x+ i0) for h(u) = e−(u−a)2/2 + e−(u+a)2/2 with a = 1.5 (Two overlaying
Maxwell distributions, plotted in fig. 6). The traced out area is shaded green and is the image of
the upper half plane under Z. We can see that Z can take positive real values and the distribution
is thus unstable.

Theorem 4.3. If h′ ∈ L1 and h′ is Lipschitz continuous, then exponentially growing modes
exist iff there exists x ∈ R such that h has a minimum at x and

PV

∫ ∞
−∞

h′(u)

u− x
du > 0. (4.53)

In the case of a flat minimum of h the condition must be adapted accordingly. Finally,
noting as [20] that at a minimum x the derivative h′(x) = 0 vanishes, we can write the integral
using partial integration as

PV

∫ ∞
−∞

h′(u)

u− x
du = lim

ε→0

(∫ x−ε

−∞
+

∫ ∞
x+ε

)
h′(u)− h′(x)

u− x
du

= lim
ε→0

2h(x)− h(x− ε)− h(x+ ε)

ε
+ PV

∫ ∞
−∞

h(u)− h(x)

(u− x)2
du

=

∫ ∞
−∞

h(u)− h(x)

(u− x)2
du

(4.54)

where we can drop the principle value in the last integral, since x is a minimum of h.

4.5 Penrose’s Proof of Stability

Having shown when growing modes exist, does not show when a solution is stable. In his paper
Penrose used the advanced Paley-Wiener theorem from Fourier analysis to show stability when
no growing modes exist. For this he rejected Landau’s argument with analytic continuation,
even though the proof of the theorem he uses needs analytic continuation.

We characterise the size of a perturbation by the created electric potential φ ∼
∫
f1(t,v)dv.

As Backus [1] we impose that for a physical realizable solution the electric potential or charge
density

∫
f1(t,v)dv at wave vector k should initially be finite and independent of the way of

counting, i.e. f1 should be absolutely integrable. This will be further discussed in section 4.6.

Furthermore we only consider stable configurations such that ∂f0(v)
∂vx

is absolutely integrable

over v and h′, h′′ ∈ L2, where h(u) = (w2
p/n)

∫
f0(u, vy, vz)dvydvz. The absolute integrability

of ∂f0(v)
∂vx

also implies h′ ∈ L1. If we also assume that h′′ is bounded, then h′ is Lipschitz
continuous and we can use the previous argument to show when growing modes exist.
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<Z

=Z

Figure 5 – Curve of Z(x+i0) for h(u) = 2e−u
2

+e−(u+a)2 with a = 2.5 (Two overlaying Maxwell
distributions, plotted in fig. 6). The traced out area is shaded green and is the image of the upper
half plane under Z. We can see that Z can take positive real values and the distribution is thus
unstable. This configuration is taken from [15].

u

h(u) h(u) = e−u
2/2

h(u) = e−(u−1.5)
2/2 + e−(u+1.5)2/2

h(u) = 2e−u
2

+ e−(u+2.5)2

Figure 6 – Marginal background distributions whose stability is discussed with the argument
principle in figs. 3 to 5.

Starting from the mode equation

∂f1(t,v)

∂t
+ ikvxf1(t,v) = iφ(t)

ke

m

∂f0(v)

∂vx
(4.55)

the homogeneous equation
∂f1(t,v)

∂t
+ ikvxf1(t,v) = 0 (4.56)

is solved by e−ikvxtf1(0,v). Hence by Duhamel’s principle (cf. section 5.3) the solution is

f1(t,v) = e−ikvxtfin(v) +

∫ t

0

4πe2i

mk
e−ikvx(t−s)

∂f0(v)

∂vx

∫
f1(s,w)dwds (4.57)

where we used k2φ(t) = 4πe
∫
f1(t,v)dv.

Then we integrate over v and by the assumed regularity we can use Fubini to find for the
potential

φ(t) =
4πe

k2

∫ ∞
−∞

e−ikutgin(u)du+
i

k

∫ t

0

∫ ∞
−∞

e−iku(t−s)h′(u)du φ(s)ds (4.58)

19



where gin(u) =
∫
fin(u, vy, vz)dvydvz. This can be written as Volterra equation

φ(t) +

∫ t

0

q(t− s)φ(s)ds = ψ(t) (4.59)

where the forcing is

ψ(t) =
4πe

k2

∫ ∞
−∞

e−ikutgin(u)du (4.60)

and the kernel is

q(t) =
−i
k

∫ ∞
−∞

e−ikuth′(u)du. (4.61)

From the assumed regularity, ψ is bounded. Also from Fourier analysis we can use lemma 5.1,
that if h′, h′′ ∈ L2 then the Fourier transformation of h′ is absolutely integrable, to conclude
q ∈ L1.

By the theory of the Volterra equation (cf. theorem 5.17) there is a unique locally integrable
solution which is given by

φ(t) = ψ(t)−
∫ t

0

Γ(t− s)ψ(s)ds (4.62)

with resolvent kernel Γ ∈ L1
loc(R+) uniquely determined by

Γ(t) +

∫ t

0

Γ(t− s)q(s)ds = q(t). (4.63)

Then by Paley-Wiener theorem 5.18, the resolvent kernel Γ is absolutely integrable iff

q̃(p) :=

∫ ∞
0

q(t)e−ptdt 6= −1 (4.64)

for all p ∈ C with <p ≥ 0. In our case the Laplace transformation can be simplified by Fubini’s
theorem as h′ ∈ L1 to

q̃(p) =

∫ ∞
0

−i
k

∫
e−ikuth′(u)du e−ptdt

=
−i
k

∫ [
e−(iku+p)t

−(iku+ p)

]∞
0

h′(u)du

= −
∫

h′(u)

k2(u− ip/k)
du

= − 1

k2
Z

(
ip

k

)
.

(4.65)

So the condition is k2 6= Z(ip/k). This is precisely the condition that Z(s) does not take a
positive value for s ∈ C and =s ≥ 0.

Finally if Γ ∈ L1, then
|φ(t)| ≤ |ψ(t)|+ ‖Γ‖1 ‖ψ‖∞ (4.66)

which is bounded. Thus if we characterise the size of a perturbation by the electric potential
φ, perturbations are stable if Z(s) does not take a positive real value for =s ≥ 0. Hence in
the case of the assumed regularity the Penrose criterion is up to the boundary case =s = 0 a
sufficient and necessary condition for stability.

Using the linearity, the Volterra equation 4.59 for the potential φ holds accordingly for a
plasma with several kinds of particles and thus the same stability argument works.

Reviewing the stability proof we see that we only needed very mild assumptions on the
perturbation f1. We just needed integrability fin ∈ L1 and f1 ∈ L1([0, T ]×R3) for finite T to
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find a closed Volterra equation for φ. This already shows that φ is locally integrable and the
unique solution can be given with the resolvent kernel Γ.

φ(t) = ψ(t)−
∫ t

0

Γ(t− s)ψ(s)ds. (4.67)

As the forcing is bounded by∣∣∣∣4πek2
∫
e−ikutgin(u)du

∣∣∣∣ ≤ 4πe

k2
‖fin‖1 , (4.68)

the integrability of the resolvent kernel already shows that φ is bounded.

4.6 Backus Rigorous Treatment

In the same year 1960, Backus [1] addressed the issues with Landau’s treatment, by first
showing an exponential bound and uniqueness for the perturbations, which allows the use of
Laplace transformation. This also shows that the discussed Volterra equation in the previous
section for the electric potential φ (cf. eq. (4.59)) only has the considered solution.

He continued by showing that the inverse Laplace transformation is justified and hence the
existence of a solution. By proving absolute convergence, he can move the contour of the inverse
Laplace transformation in the right half plane to show the stability or instability depending
on the existence of zeros of k2 − Z(s) for s in the upper half plane (cf. eqs. (4.34) and (4.35))
with a more detailed discussion of the required regularity. Further, he noted that under the
finer measure of the perturbation size

∫ ∣∣∫ f1(u, vy, vz)dvydvz
∣∣du and quite relaxed regularity

conditions, there exists growing perturbations even for the Maxwell distribution. This again
shows that Landau damping crucially depends on how we define the size of a perturbation.

Finally, he investigated the scope of the linearised theory for predicting the asymptotic
behaviour of the non-linear system, which is limited as the neglected terms are not decaying
but growing. For the case of a thermonuclear plasma he estimated that after only 220µs the
linearised theory is no longer admissible.

Since these calculations are quite technically, we will only discuss the exponential bound in
a slightly different way than [1] to take the perpendicular directions to k into account.

As Backus [1] pointed out, an exponential bound is non-trivial for a linear equation in time,
as we can see from the counterexample that for the backward heat equation

4
∂f

∂t
+
∂2f

∂x2
= 0 (4.69)

we have for x ∈ R and t ∈ [0, T ] the solution

(T − t)−1/2 exp(x2/t− T ). (4.70)

We start again with the mode equation where we replaced φ

∂f1(t,v)

∂t
+ ikvxf1(t,v) =

4πe2

m

i

k

∫
f1(t,w)dw

∂f0(v)

∂vx
. (4.71)

We suppose again that ∂f0(v)
∂vx

is absolutely integrable and measure the size of a perturbation
by the charge density in this mode

Q(t) :=

∫
f1(t,v)dv (4.72)

which should be independent of the way of counting, i.e.

A(t) :=

∫
|f1(t,v)|dv <∞. (4.73)
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We will only consider perturbations for which there exists a time interval [0, T ] over which
A is finite, as we suppose that every physical realisable perturbation has this form. A priori
we still allow A→∞ in finite time.

As in the previous section (eq. (4.57)) the equivalent integral equation by Duhamel’s prin-
ciple is

f1(t,v) = e−ikvxtfin(v) +

∫ t

0

4πe2i

mk
e−ikvx(t−s)

∂f0(v)

∂vx
Q(s)ds (4.74)

for which we prove the following lemma.

Lemma 4.4. If f1 is such that, A(t) is bounded for t ∈ [0, T ] and for all t ∈ [0, T ] satisfies

f1(t,v) = e−ikvxtfin(v) +

∫ t

0

4πe2i

mk
e−ikvx(t−s)

∂f0(v)

∂vx
Q(s)ds (4.75)

then for t ∈ [0, T ]
|Q(t)| ≤ A(0) cosh(ωpt) (4.76)

and Q is continuous with respect to t. Furthermore, for v where fin(v) := f1(0,v) and ∂f0(v)
∂vx

are defined (which are almost all v)

|f1(t,v)| ≤ |fin(v)|+A(0)
ωp
nk

∣∣∣∣∂f0(v)

∂vx

∣∣∣∣ sinh(ωpt) (4.77)

and ∂f1(v)
∂t exists, is continuous and satisfies

∂f1(t,v)

∂t
+ ikvxf1(t,v) =

4πe2

m

i

k

∫
f1(t,w)dw

∂f0(v)

∂vx
. (4.78)

Note that the boundedness of A(t) in particular implies that fin is absolutely integrable.

Proof. By the assumptions we can integrate eq. (4.75) over v and use Fubini to find

Q(t) =

∫
e−ikvxtfin(v)dv +

∫ ∞
u=−∞

∫ t

s=0

ω2
pi

k
e−iku(t−s)g′0(u)Q(s)dsdu. (4.79)

By integration by parts with respect to u and s the second term is∫ ∞
u=−∞

∫ t

s=0

ω2
pi

k
e−iku(t−s)g′0(u)Q(s)dsdu = −

∫ ∞
u=−∞

∫ t

s=0

(t− s)ω2
pe
−iku(t−s)g0(u)Q(s)dsdu

= −ω2
p

∫ t

s1=0

∫ s1

s2=0

Q(s2)

∫ ∞
−∞

e−iku(t−s)g0(u)duds2ds1.

(4.80)

Putting the second term back gives

Q(t) =

∫
e−ikvxtfin(v)dv − ω2

p

∫ t

s1=0

∫ s1

s2=0

Q(s2)

∫ ∞
−∞

e−iku(t−s)g0(u)duds2ds1. (4.81)

The density g0 is non-negative and normalised by
∫∞
∞ g0(u)du = 1, so that∣∣∣∣∫ ∞

−∞
e−iku(t−s)g0(u)du

∣∣∣∣ ≤ ∫ ∞
−∞
|g0(u)|du = 1. (4.82)

Hence we can bound
|Q(t)| ≤ A(0) + ω2

pF (t) (4.83)

where

F (t) =

∫ t

0

∫ s1

0

|Q(s2)|ds2ds1. (4.84)
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Let h(t) = F ′′(t)− ω2
pF (t), then as F ′′(t) = |Q(t)|, we can conclude h(t) ≤ A(0).

On the other hand

F (t) =

∫ t

0

∫ s1

0

h(s2)eωp(2s1−s2−t)ds2ds1 (4.85)

which can be verified by integration by parts. Plugging in h(t) ≤ A(0), we find

F (t) ≤ A(0)

∫ t

0

∫ s1

0

eωp(2s1−s2−t)ds2ds1

=
A(0)

ωp

∫ t

0

(
eωp(2s1−t) − eωp(s1−t)

)
ds1

=
A(0)

ω2
p

(
eωpt − e−ωpt

2
− (1− e−ωpt)

)
=
A(0)

ω2
p

(cosh(ωpt)− 1) .

(4.86)

Hence by eq. (4.83), the first bound eq. (4.76) is proven. With this bound eq. (4.81) implies
that Q is continuous with respect to t.

Plugging this bound into the integral equation eq. (4.75) gives for v such that fin(v) :=

f1(0,v) and ∂f0(v)
∂vx

are defined

|f1(t,v)| ≤ |fin(v)|+
∫ t

0

ω2
p

nk

∣∣∣∣∂f0(v)

∂vx

∣∣∣∣A(0) cosh(ωpt)ds

= |fin(v)|+A(0)
ωp
nk

∣∣∣∣∂f0(v)

∂vx

∣∣∣∣ sinh(ωpt).

(4.87)

Finally by continuity of Q the derivative ∂f1(t,v)
∂t exists by eq. (4.75) and is given by

∂f1(t,v)

∂t
= −ikvxe−ikvxtfin(v) +

iω2
p

nk

∂f0(v)

∂vx
Q(t) +

∫ t

0

ω2
p

n
e−ikvx(t−s)

∂f0(v)

∂vx
Q(s)ds (4.88)

which is continuous and satisfies eq. (4.78).

By linearity this shows the uniqueness of the solution, because the difference of two solutions
with the same initial data is a solution with A(0) = 0.

Hence no disturbance can grow at a rate faster than ωp. Therefore, f1 and so φ are
exponentially bounded unless the solution cannot be extended beyond T . By the Laplace
transformation we can however show the existence of such a solution [1], so that f1 and φ are
exponentially bounded with rate ωp. Moreover, with the assumed regularity of the unperturbed

system that ∂f0(v)
∂vx

is absolutely integrable, also A(t) grows at most with rate ωp which justifies
the assumed integrability in Penrose’s argument.

For his stability analysis he only considered the marginal distribution

g1(t, u) =

∫
f1(t, u, vy, vz)dvydvz (4.89)

and its evolution. We consider a stable distribution

g0(t, u) = n−1
∫
f0(t, u, vy, vz)dvydvz (4.90)

such that g′0 ∈ L1 ∩ L2 and satisfying the stability criterion, i.e. for all ω ∈ C with =(ω) > 0∣∣∣k2 − Z (ω
k

)∣∣∣ ≥ κ > 0. (4.91)

For example we could consider the Maxwell distribution. His first stability result [1, Theorem
2] is for a perturbation g1 with initial datum gin.
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Theorem 4.5. If gin ∈ L1∩L2, then A(t) =
∫
|g1(t, u)|du is bounded for all time and if g′0(u)

is bounded,
∫
|g1(t, u)|2 du is also bounded for all time.

However, with this stricter measure A for the size of a perturbation he finds [1, Theorem
3].

Theorem 4.6. There exists gin ∈ L1 such that A(t) =
∫
|g1(t, u)|du is not a bounded function

of time.

Note that our previous stability argument by Penrose shows that
∫
g1(t, u)du is still bounded.

For his results he used

gin(u) =

{
(u− ω)−1 |log(u− ω)|−3/2 if ω < u < ω + 1

2

0 otherwise
(4.92)

where ω ∈ R is such that g′0(ω) 6= 0 and brings this to a contradiction with the assumption
that A(t) is bounded.

4.7 A More Quantitative Approach by Mouhot and Villani

For their work on non-linear Landau damping, Mouhot and Villani [17, Chapter 3] tried to
find a more quantitive statement about linear Landau damping, which we are going to show
in this section.

For their treatment we use periodic boundary conditions, i.e. we consider the space to be
the d-dimensional torus TdL = Rd/LZd, which introduces a length scale L, and do not restrict
to Coulomb interaction, but rather allow a general interaction potential3 ψ12(x,y) = W (x−y).
Following the same arguments from section 3.6 we find the Vlasov equation as mean field limit

∂f(t,x,v)

∂t
+ v · ∂f(t,x,v)

∂x
+

F

m
· ∂f(t,x,v)

∂v
= 0 (4.93)

F = −∂(W ∗ ρ)(t,x)

∂x
= −∇W ∗ ρ (4.94)

where ∗ denotes the convolution on TdL and ρ(t,x) =
∫
f(t,x,v)dv.

It should be noted, that the reduction of the interaction potential to a torus is not obviously
possible, because for the Coulomb interaction or Newtonian gravity the flat space interaction
is not integrable for dimensions d ≥ 3. In the case of Coulomb interaction, however, we can
appeal to Debye screening to introduce a cut-off such that the potential Wf : Rd → R can be
made periodic by

W (x) =
∑
n∈Zd

Wf (x + Ln). (4.95)

An overview of the periodization issue can be found in their paper [17, Chapter 2].
In the case of a torus, we get discrete Fourier modes for k = (2π/L)n where n ∈ Zd. For

such a k we have the Fourier coefficient

Ŵ (k) =

∫
TdL
W (x)e−ix·kdx =

∫
Rd
Wf (x)e−ix·kdx = Ŵf (k) (4.96)

where Ŵf (k) is the Fourier transformation of Wf over Rd.
For the stability discussion we will assume that W is even, i.e. W (−x) = W (x), and that

W , ∇W ∈ L1(TdL). Further we rescale W such that we can set m = 1. By the same argument
(cf. section 4.1) we linearise around a fixed distribution f0(v). For a perturbation f1(t,x,v)
the linearised equation is like before

∂f1(t,x,v)

∂t
+ v · ∂f1(t,x,v)

∂x
− (∇W ∗ ρ)(t,x) · ∂f0(x)

∂v
= 0 (4.97)

3This allows for example to treat galaxies under gravity by the same analysis where the stars are particles.
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where ρ(t,x) =
∫
f1(t,x,v)dv.

As in Penrose’s stability proof we use Duhamel’s principle (cf. section 5.3) to find an
integral integration. The homogeneous equation

∂f1(t,x,v)

∂t
+ v · ∂f1(t,x,v)

∂x
= 0 (4.98)

has the solution f1(0,x− tv,v) so the equivalent integral equation is

f1(t,x,v) = fin(x− tv,v) +

∫ t

0

(∇W ∗ ρ)(s,x− (t− s)v) · ∂f0(v)

∂v
ds (4.99)

where fin(x,v) = f1(0,x,v) is the initial datum.
As before we assume that the solution f1 is integrable over finite time. Integrating over v

gives a closed equation for ρ

ρ(t,v) = ρin(x− tv) +

∫ t

0

∫
Rd

(∇W ∗ ρ)(s,x− (t− s)v) · ∂f0(v)

∂v
dvds (4.100)

where ρin(x) =
∫
fin(x,v)dv is the initial datum and we can justify the use of Fubini, because

for any finite time where ρ(t, ·) is bounded, the convolution is bounded as we assume ∇W ∈ L1.
For the stability analysis we consider analytic stable configurations f0(v). In particular this

implies integrability and we can look at the evolution of a Fourier coefficient for k = (2π/L)n
where n ∈ Zd over space and the continuous modes over velocity.

For the different terms we find∫
TdL
ρ(t,x)e−ik·xdx = ρ̂(t,k) (4.101)

and by a simple change of variables∫
TdL
ρin(x− tv)e−ik·xdx =

∫
TdL

∫
Rd
fin(x,v)e−ik·(x+tv)dvdx = f̂in(k, tk). (4.102)

By the same pattern the last term is∫
TdL

∫ t

0

∫
Rd

(∇W ∗ ρ)(s,x− (t− s)v)
∂f0(v)

∂v
dvds e−ik·xdx

=

∫ t

0

∫
TdL

∫
Rd

(∇W ∗ ρ)(s,x)
∂f0(v)

∂v
e−ik·(x+(t−s)v)dvdxds

=

∫ t

0

̂(∇W ∗ ρ)(s,k) · ik(t− s)f̂0((t− s)k)ds

=

∫ t

0

− |k|2 (t− s)Ŵ (k)f̂0((t− s)k)ρ̂(s,k)ds.

(4.103)

Putting it together we find the Volterra equation for ρ̂(t,k)

ρ(t,k) +

∫ t

0

K0(t− s,k)ρ(s,k)ds = a(t,k) (4.104)

where the kernel is
K0(t,k) = Ŵ (k)f̂0(tk) |k|2 t (4.105)

and the forcing is
a(t,k) = f̂in(k, tk). (4.106)

We suppose f0 is analytic so that we can find constants C0, λ > 0 such that for all η ∈ Rd∣∣∣f̂0(η)
∣∣∣ ≤ C0e

−λ|η|. (4.107)
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Since we have a discrete spectrum either k = 0 or |k| ≥ (2π/L). In the first case K0(t,k = 0)
is vanishing. Otherwise for t ≥ 0∣∣K0(t,k)

∣∣ ≤ ∣∣∣Ŵ (k)
∣∣∣C0 |k|2 te−λt|k|. (4.108)

Hence for p ∈ C with <(p) > −λ |k| we have an absolutely convergent Laplace transformation

K̃0(p,k) =

∫ ∞
0

K0(t,k)e−ptdt. (4.109)

We can now prove a quantative statement about stability (cf. [17, Lemma 3.6]).

Lemma 4.7. Given a stable configuation f0 = f0(v) and constants C0, λ such that for all
η ∈ Rd ∣∣∣f̂0(η)

∣∣∣ ≤ C0e
−λ|η| (4.110)

and an even interaction potential W : TdL → R with ‖W‖L1(TdL)
≤ CW . Further suppose that

there exist κ > 0 such that for k = (2π/L)n where n ∈ Zd and all p ∈ C with <(p) > −λ |k|∣∣∣K̃0(p,k) + 1
∣∣∣ ≥ κ (4.111)

holds where

K̃0(p,k) =

∫ ∞
0

K0(t,k)e−ptdt, (4.112)

K0(t,k) = Ŵ (k)f̂0(tk) |k|2 t. (4.113)

Then any solution φ(t,k) of

φ(t,k) +

∫ t

0

K0(t− s,k)φ(s,k) = a(t,k) (4.114)

satisfies for any k = (2π/L)n where n ∈ Zd and any λ′ < λ

sup
t≥0
|φ(t,k)| eλ

′|k|t ≤
(

1 +
C0CW√

8(λ− λ′)2κ

)
sup
t≥0
|a(t,k)| eλ|k|t. (4.115)

Proof. If supt≥0 |a(t,k)| eλ|k|t = ∞, there is nothing to prove. Likewise if k = 0, then
K0(t,k = 0) vanishes and the statement becomes obvious. Hence we only need to consider
the case A(k) := sup |a(t,k)| eλ|k|t < ∞ and |k| ≥ 2π/L. We show the inequality for each k
separately and thus consider k as given constant in the rest of the proof.

Noting as in theorem 5.11 and lemma 5.16 we can multiply the functions by a factor eλ
′|k|t

for some constant λ′ to get an equivalent equation, i.e. if we let

φλ′(t,k) = φ(t,k)eλ
′|k|t, K0

λ′(t,k) = K0(t,k)eλ
′|k|t and aλ′(t,k) = a(t,k)eλ

′|k|t (4.116)

then the Volterra equation eq. (4.114) is equivalent to

φλ′(t,k) +

∫ t

0

K0
λ′(t− s,k)φλ′(s,k) = aλ′(t,k) (4.117)

by multiplying the equation by eλ
′|k|t. Further we can bound for λ′ < λ

|a′λ(t,k)| < A(k)e−(λ−λ
′)|k|t (4.118)

and since ‖W‖L1 ≤ CW implies
∣∣∣Ŵ (k)

∣∣∣ ≤ CW , the kernel is bounded by∣∣K0
λ′(t,k)

∣∣ ≤ C0CW |k|2 te−(λ−λ
′)|k|t. (4.119)
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Hence for any λ′ < λ, the functions aλ′(t,k) and K0
λ′(t,k) are integrable and square integrable

over time. Also
K̃0
λ′(p,k) = K̃0(p− λ′ |k| ,k) (4.120)

so that by Paley-Wiener theorem 5.18 the resolvent rλ′(t,k) given by

rλ′(t,k) +

∫ t

0

rλ′(t− s,k)K0
λ′(s,k)dt = K0

λ′(t,k). (4.121)

is integrable over time t iff for all p ∈ C with <(p) ≥ −λ′ |k| holds

K̃0(p,k) 6= −1. (4.122)

By theorem 5.17 the solution φ is given with the resolvent kernel by

φλ′(t,k) = aλ′(t,k)−
∫ t

0

rλ′(t− s,k)aλ′(s,k)ds. (4.123)

Hence if rλ′(t,k) is integrable and aλ′(t, k) is bounded over t, also φλ′(t,k) is bounded over t.
Hence for any λ′ < λ also φλ′(t,k) is integrable and square integrable over t, because there

exists ε > 0 such that φλ′+ε(t,k) is bounded over t and |φλ′(t,k)| ≤ |φλ′+ε(t,k)| e−ε|k|t.
Now extend aλ′ , φλ′ and K0

λ′ to functions of R by setting them zero for t < 0. Then the
Volterra equation can be written as equation for t ∈ R

φλ′(t,k) +

∫
R
K0
λ′(t− s,k)φλ′(s,k)ds = aλ′(t,k). (4.124)

Since φλ′ , K
0
λ′ and aλ′ are integrable and square integrable over time, we can take the Fourier

transformation in the time variable, i.e.

φ̂λ′(ω,k) =

∫
φλ′(t,k)e−iωtdt (4.125)

and accordingly for K0
λ′ and aλ′ , where the transformed functions are square integrable and

bounded. The integral equation becomes equivalently

φ̂λ′(ω,k) + K̂0
λ′(ω,k)φ̂λ′(ω,k) = âλ′(ω,k). (4.126)

As K̂0
λ′(ω,k) = K̃0(iω + λ′ |k| ,k) 6= −1 this is equivalent to

φ̂λ′(ω,k) =
âλ′(ω,k)

1 + K̂0
λ′(ω,k)

. (4.127)

The denominator is at least κ using the assumption
∣∣∣K̃0(p,k) + 1

∣∣∣ ≥ κ for p = λ′ |k| + iω.

Hence by Parsevals’s theorem

‖φλ′(t,k)‖L2(dt) ≤
1

κ
‖aλ′(t,k)‖L2(dt) . (4.128)

Using Cauchy-Schwarz we find∣∣∣∣∫ t

0

K0
λ′(t− s,k)φλ′(s,k)ds

∣∣∣∣ ≤ ∥∥K0
λ′(t,k)

∥∥
L2(dt)

‖φλ′(t,k)‖L2(dt) . (4.129)

Hence we get from the Volterra equation eq. (4.117)

|φλ′(t,k)| ≤ |aλ′(t,k)|+
∥∥K0

λ′(t,k)
∥∥
L2(dt)

‖φλ′(t,k)‖L2(dt) . (4.130)

Taking the supremum we find as |aλ′(t,k)| ≤ |aλ(t,k)| for λ′ ≤ λ

‖φλ′(t,k)‖L∞(dt) ≤ ‖aλ(t,k)‖L∞(dt) +
‖aλ′(t,k)‖L2(dt)

∥∥K0
λ′(t,k)

∥∥
L2(dt)

κ
. (4.131)
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The kernel can be bounded by eq. (4.119)

∥∥K0
λ′(t,k)

∥∥
L2(dt)

≤ C0CW |k|2
[∫ ∞

0

t2e−2(λ−λ
′)|k|tdt

]1/2
=
C0CW |k|1/2

2(λ− λ′)3/2
. (4.132)

By Cauchy-Schwarz we can also bound as λ′ < λ

‖aλ′(t,k)‖L2(dt) =

(∫ ∞
0

|aλ(t,k)|2 e−2(λ−λ
′)|k|t

)1/2

≤
‖aλ(t,k)‖L∞(dt)

(2(λ− λ′) |k|)1/2
. (4.133)

Plugging in these bounds into eq. (4.130) gives the desired estimate.

Putting this together we arrive at their quantitative statement [17, Theorem 3.1].

Theorem 4.8 (Quantitative Linear Landau Damping). Given a stable configuation f0 = f0(v)
and constants C0, λ such that for all η ∈ Rd∣∣∣f̂0(η)

∣∣∣ ≤ C0e
−λ|η| (4.134)

and an even interaction potential W : TdL → R with ‖W‖L1(TdL)
≤ CW and ‖∇W‖L1(TdL)

≤ CW .

Further suppose that there exist κ > 0 such that for k = (2π/L)n where n ∈ Zd and all p ∈ C
with <(p) > −λ |k| ∣∣∣K̃0(p,k) + 1

∣∣∣ ≥ κ (4.135)

holds where K̃0 is from lemma 4.7.
Given initial data fin = fin(x,v) and positive constants α, Cin such that for all k =

(2π/L)n where n ∈ Z and η ∈ Rd ∣∣∣f̂in(k, η)
∣∣∣ ≤ Cine−α|η|. (4.136)

Then the solution f1 = f1(t,x,v) of the linearised Vlasov equation eq. (4.97) with initial datum
fin converges as t→∞ weakly to f∞ = 〈fin〉 defined by

f∞ =
1

Ld

∫
TdL
fin(x,v)dx (4.137)

and ρ(x) =
∫
Rd f1(x,v)dv converges strongly to

ρ∞ =
1

Ld

∫
TdL

∫
Rd
fin(x,v)dvdx. (4.138)

More quantitative for any λ′ < min(λ, α) and all r ∈ N and k = (2π/L)n where n ∈ Zd and
η ∈ Rd

‖ρ(t, ·)− ρ∞‖Cr = O(e−2πλ
′t/L) (4.139)∣∣∣f̂(t,k, η)− f̂∞(k, η)

∣∣∣ = O
(
e−λ

′|k|t
)
. (4.140)

Proof. By the remarks and the lemma before for λ′ < min(λ, α) and k = (2π/L)n where
n ∈ Zd

|ρ̂(t,k)| ≤
(

1 +
C0CW√

8(λ− λ′)2κ

)
Cine

−λ|k|t = Cρe
−λ|k|t (4.141)

where Cρ is a constant and we used that the forcing is f̂in(k, tk) which we assumed to be
sufficiently bounded (cf. eq. (4.106)). In particular for k 6= 0 and any λ′′ < λ′ and t ≥ 1 as
|k| ≥ (2π/L)

|ρ̂(t,k)| = O
(
e−2πλ

′′t/Le−(λ
′−λ′′)|k|t

)
. (4.142)
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Hence any Sobolev norm of ρ− ρ∞ converges to zero like O(e−2πλ
′′t/L), where we can choose

λ′′ arbitrary close to λ. By Sobolov embedding theorem [28] the same is true for any Cr norm.
With a bound for the density we can return to the Volterra equation 4.99. As for the

density we can take the Fourier transformation in space and time. By the same pattern we
find for k = (2π/L)n where n ∈ Zd and η ∈ Rd

f̂1(t,k, η) = f̂in(k, η + tk) +

∫ t

0

∇̂W (k)ρ̂(s,k) · ∇̂vf0(η + (t− s)k)ds. (4.143)

Hence

f̂1(t,k, η − tk) = f̂in(k, η) +

∫ t

0

∇̂W (k)ρ̂(s,k) · ∇̂vf0(η − sk)ds (4.144)

and setting k = 0 as ∇̂W (0) = 0

f̂1(t, 0, η) = f̂in(0, η), (4.145)

which shows that 〈f〉 = L−d
∫
TdL
fdx is constant in time. For |k| ≥ (2π/L) and putting in the

bounds ∣∣∣f̂(t,k, η − tk)
∣∣∣ ≤ ∣∣∣f̂in(k, η)

∣∣∣+

∫ t

0

∣∣∣∇̂W (k)
∣∣∣ |ρ̂(s,k)|

∣∣∣∇̂vf0(η − sk)
∣∣∣ds

≤ Cine−α|η| +
∫ t

0

CWCρe
−λ′|k|s |η − sk|C0e

−λ|η−sk|ds

≤ Cf
(
e−α|η| +

∫ t

0

e−λ
′|k|se

−
(
λ+λ′

2

)
|η−sk|

ds

) (4.146)

where we used that λ′ < λ′+λ
2 < λ and Cf is a constant. The integral can be estimated as∫ t

0

e−λ
′|k|se

−
(
λ+λ′

2

)
|η−sk|

ds ≤
∫ t

0

e−λ
′|η|e

−
(
λ−λ′

2

)
|η−sk|

ds

≤ L

π(λ− λ′)
e
−
(
λ′−λ−λ

′
2

)
|η|
.

(4.147)

With λ′′ = λ′ − λ−λ′
2 we can put this back to arrive at∣∣∣f̂1(t,k, η − tk)

∣∣∣ ≤ Ce−λ′′|η| (4.148)

for some constant C. For fixed η and k 6= 0∣∣∣f̂1(t,k, η)
∣∣∣ ≤ Ce−λ′′|η+tk| = O

(
e−λ

′′|k|t
)
. (4.149)

Hence pointwise f̂1 converges exponentially fast to the Fourier transform of 〈fin〉. As λ′ and
so λ′′ can be arbitrary close to min(α, λ), this proves the claim.

Like before we can then relate the assumption
∣∣∣K̃0(p,k) + 1

∣∣∣ ≤ κ to the boundary behaviour

and recover Penrose’s stability criterion.

4.8 Interpretation of Results

We only considered perturbations following the linearised Vlasov equation which is not time-
reversible. However, we hope that this also describes the behaviour for the full Vlasov equation
which is time-reversible. This may raise the first objection why we only observe the exponen-
tially decaying modes and not the growing modes which should exist by time reversion.
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Mouhot and Villani [17] answered this question for the full Vlasov equation by phase-
mixing, i.e. mathematically we only observe the evolution of the weak topology of a solution.
This corresponds to the observation of Landau in his first paper [14] that the electric field is
decaying but not the full distribution f1 = f1(t,x,v) and is already present in the linearised
case.

The idea of phase mixing can already be illustrated in one dimension on a torus for the free
transport equation by fig. 7. Even though the local density in phase space is only transported
and does not converge, the average density in any volume converges to the average density. A
physical example illustration by [21] is the idea of an oil film which partly covers a glass of
water under stirring.

x

v

Phase at time t1

x

v

Phase at time t2

x

v

Phase at time t3

x

v

Phase at time t4

Figure 7 – Illustration of phase mixing in one dimension: Consider the free transport equation
∂f1
∂t

+ v · ∂f1
∂x

= 0 and the space as torus. At time t1 all particles are collected in a strip whose
evolution to later times t2 < t3 < t4 is shown. We can see that the spatial marginal distribution
becomes more and more uniform.

Already in 1967 it was noted in [10] that this is not strong convergence which is observ-
able through plasma wave echos. They predicted if we create a wave in a plasma and let it
damp away and then create a second wave, it will still be damped, but we can also observe a
spontaneous third wave, the so called echo.

Finally, a common interpretation is the so called surfer picture that particles slower than
the wave are accelerated while particles faster are decelerated. Since for a Maxwell distribution
there are more faster particles than slower particles this is supposed to show damping. However,
the statement that slower particles are accelerated in general is wrong as a more careful study
by [8] and [23, Chapter 4] shows.

5 Mathematical Analysis

In this section we develop the mathematical theory which we used to prove stability. We start
with the Fourier and Laplace transformation which are used throughout the essay. Afterwards
we introduce Duhamel’s principle which allows to express the Vlasov equation as a Volterra
equation. We then develop the theory of the Volterra equation ending with the Paley-Wiener
theorem. Finally, we show the Plemelj formula which we need to use the argument principle
in Penrose stability criterion.

5.1 Fourier Transformation

For a function f : Rd → C introduce the Fourier transformation

f̂(k) =

∫
f(x)e−ik·xdx (5.1)

and the inverse Fourier transformation

f(x) = (2π)−d
∫
f̂(k)eik·xdk. (5.2)

From linearity of the integral, both transformations are linear.
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For f ∈ L2 Parseval’s theorem [25, Chapter 3] states that the integral converges in L2 and
is (up to a factor

√
2π) a linear isometry∥∥∥f̂∥∥∥

2
= (2π)−d/2 ‖f‖2 (5.3)

and the inversion formula holds.
For a differentiable function f , we can formulate a simplified lemma [20] of [25, Theorem

84] showing integrability of the Fourier transformation using Parseval’s theorem. This is used
in Penrose stability proof to show that the kernel is integrable.

Lemma 5.1. If f : R→ C is differentiable function and f, f ′ ∈ L2, then the Fourier transfor-
mation f̂ is in L1.

Proof. This simpler proof has been suggested by Mouhot. By the Cauchy-Schwarz inequality∫ ∞
−∞
|f̂(k)|dk =

∫ ∞
−∞

(1 + |k|)|f̂(k)|
(1 + |k|)

dk

≤
(∫ ∞
−∞

1

(1 + |k|)2
dk

)1/2(∫ ∞
−∞

(1 + |k|)2|f̂(k)|2
)1/2

≤ C
(∫ ∞
−∞
|f̂(k)|2dk +

∫ ∞
−∞
|k|2 |f̂(k)|2dk

) (5.4)

where C = 2(
∫∞
−∞(1 + |k|)−2dk)1/2 <∞.

Since the Fourier transformation of f ′ is ikf̂(k), Parseval’s theorem shows(∫ ∞
−∞
|f̂(k)|2dk +

∫ ∞
−∞
|k|2 |f̂(k)|2dk

)
= ‖f‖2 + ‖f ′‖2 <∞ (5.5)

which finished the proof.

For f ∈ L1 the integral f̂(k) exists for all k with ‖f̂‖∞ ≤ ‖f‖1 and by dominated conver-

gence f̂ is a continuous function of k.
The inversion is more difficult in this case and often expressed in the Fourier integral

theorem (proven in a slightly different form in [25, Theorem 23]).

Theorem 5.2. Let f ∈ L1(R) and if there exists a neighbourhood of x in which f is continu-
ously differentiable then

f(x) =
1

2π
lim
λ→∞

∫ λ

−λ
eixu

∫ ∞
∞

f(t)e−iutdtdu. (5.6)

For the uniqueness the following theorem [24, Lemma 4.2, Page 87] suffices.

Theorem 5.3. Let f ∈ L1 such that its Fourier transform f̂ is also in L1. Then for almost
every x

f(x) = (2π)−d
∫
f̂(k)eik·xdx. (5.7)

By linearity this shows the uniqueness of the Fourier transformation, because if f, g ∈ L1

have almost everywhere the same Fourier transformation, then the difference f − g has almost
everywhere vanishing Fourier transformation. Hence by the theorem f(x)−g(x) = 0 for almost
all x.

Proof. Let f, g ∈ L1, then their Fourier transformation f̂ respectively ĝ are bounded, so that
we can use Fubini to find ∫

f̂(k)g(k)dk =

∫
f(k)ĝ(k)dk. (5.8)
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Now let g be a modulated Gaussian for δ > 0 and fixed x ∈ Rd given by

g(k) = (2π)−de−πδ|k|
2

eik·x. (5.9)

Its Fourier transformation is by elementary calculation

ĝ(y) =

∫
g(k)e−ik·ydk = (2π)−dδ−d/2e−|x−y|

2/(4πδ) (5.10)

which we call Kδ(x− y). This is a kernel as∫
Kδ(y)dy = 1 (5.11)

and for every η > 0,

lim
δ→0

∫
|y|≥η

Kδ(y)dy = 0. (5.12)

The relation eq. (5.8) becomes

(2π)−d
∫
f̂(k)e−πδ|k|

2

eik·xdk =

∫
f(k)Kδ(x− k)dk. (5.13)

As δ → 0 the LHS converges by dominated convergence to (2π)−d
∫
f̂(k)eik·xdk.

By change of variable k = x− y the RHS becomes∫
f(x− y)Kδ(y)dy. (5.14)

Since Kδ integrates to one we find∫
f(x− y)Kδ(y)dy − f(x) =

∫
[f(x− y)− f(x)]Kδ(y)dy. (5.15)

With fy(x) = f(x− y) the L1 norm of the difference is∫ ∣∣∣∣∫ [f(x− y)− f(x)]Kδ(y)dy

∣∣∣∣dx ≤
∫
‖fy − f‖1Kδ(y)dy. (5.16)

By dominated convergence ‖fy − f‖1 → 0 as y → 0, so for any ε > 0 there exists δ > 0 such
that ‖fy − f‖ < ε if |y| ≤ δ. Hence∫

‖fy − f‖1Kδ(y)dy ≤ ε+

∫
|y|>δ

‖fy − f‖1Kδ(y)dy

≤ ε+ 2 ‖f‖1
∫
|y|>δ

Kδ(y)dy.

(5.17)

As δ → 0 the RHS converges to ε. Since this holds for all ε > 0, this show that
∫
f(k)Kδ(x− k)dk

converges in L1 to f .

A function on a torus TdL := RdL/LZd can be considered as a function f : [0, L]→ C. Since
[0, L] has finite measure by Schwarz inequality L2([0, L]) ⊂ L1([0, L]). The functions eik·x

are only smooth if k = (2π/L)n for n ∈ Zd and the theory of Fourier series shows that the
functions eik·x with these coefficients are a basis.

More precisely, we define the Fourier series an of f by

an =

∫
[0,L]d

e−ik·xf(x)dx, with k =
2π

L
n. (5.18)

From [24, Chapter 4] we note the following similar properties for f ∈ L1([0, L])
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• If an = 0 for all n, then f(x) = 0 for almost every x,

•
∑

n∈Zd anr
|n|ein·x → f(x) for almost every x as r → 1, r < 1,

• If f ∈ L2, then Parseval’s relation states∑
n∈Zd

|an|2 = L−1
∫
[0,L]d

|f(x)|2 dx, (5.19)

• If f ∈ L2, then
∑

n∈Z,|n|≤N ane
in·x converges in L2 to f as N →∞.

Hence we note that we have very similar properties except that we have a discrete spectrum
with a minimal non-zero frequency 2π/L related to the length L. Therefore, we still write for
k = (2π/L)n and n ∈ Zd

f̂(k) =

∫
[0,L]d

f(x)e−ik·xdx. (5.20)

5.2 Laplace Transformation

A less common transformation more useful to boundary value problems is the Laplace trans-
formation. Our presentation is following [2, 6].

For the motivation we consider functions f : R+ → C which are exponentially bounded,
i.e. there exist real numbers c and M such that for all t ∈ R+

|f(t)| ≤Mect. (5.21)

For two such functions f and g we can use pointwise addition to obtain a new exponentially
bounded function. Using the convolution in R+

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ (5.22)

we have a closed multiplication between functions since with |f(t)| ≤ M1e
c1t and |g(t)| ≤

M2e
c2t for all t

|(f ∗ g)(t)| ≤M1M2

∫ t

0

ec1τec2(t−τ)dτ ≤Mect (5.23)

where M = M1M2 and c = max(c1, c2). We can prove that this indeed defines an algebraic
ring which motivates the algebraic operator calculus by Mikusiński whose idea is to solve the
problem in the quotient field of the ring [2, 7].

Viewed from this point, the Laplace transformation is a ring isomorphism to a space where
convolution as multiplication becomes pointwise multiplication which can easily be inverted.
Since we analyse the complex structure of the transformation, we use a direct approach towards
Laplace transformation.

Definition 5.4 (Laplace Transformation). For a function f : R+ → C define the Laplace
transformation f̃ = Lf by

f̃(p) =

∫ ∞
0

f(t)e−ptdt (5.24)

whenever the integral converges.

The condition4 that f : R+ → C has an exponential bound |f(t)| ≤Mect for all t ∈ R+ and
some real constants c and M can be slightly generalised to the condition that f(t)e−c0t ∈ L1

for a real constant c0 by choosing c0 > c.
From this we can show

4Backus’ treatment (cf. section 4.6) shows the existence of an exponential bound in our application. In the
operator calculus of [2] the attention is restricted to this class of exponentially bounded functions. The more
general form is used in [6].
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• For the right half plane consisting of p ∈ C with <(p) ≥ c0, f̃(p) is defined and a bounded
analytic function of p.

• f̃(p) → 0 uniformly as <(p) → ∞. Since f(t)e−c0t ∈ L1, we can adapt the proof of the
Riemann-Lebesque lemma to show that also f̃(x+ iy)→ 0 uniformly over x ∈ [c0,∞) as
y →∞. Combine this to find that f̃(p)→ 0 uniformly as |p| → ∞ for <(p) ≥ c0.

Theorem 5.5 (Convolution under Laplace transformation). Let f , g be functions of R+ with
a constant c0 such that f(t)e−c0t and g(t)e−c0t are in L1. Then (f ∗ g)(t)e−c0t ∈ L1 and for
p ∈ C with <(p) ≥ c0

L(f ∗ g)(p) = (Lf)(p)(Lg)(p). (5.25)

Proof. Let p ∈ C with <(p) ≥ c0. Since (Lg)(p) is a constant we can put it under the integral
of (Lf)(p) to find

(Lf)(p)(Lg)(p) =

∫ ∞
0

f(τ)e−pτ
∫ ∞
0

g(s)e−psdsdτ. (5.26)

Since f(t)e−c0t ∈ L1 and g(t)e−c0t ∈ L1 the integral is absolutely convergent. Hence we can
substitute t = s+ τ and change the order of integration

(Lf)(p)(Lg)(p) =

∫ ∞
0

f(τ)e−pτ
∫ ∞
t

g(t− τ)e−p(t−τ)dtdτ

=

∫ ∞
0

(∫ t

0

f(τ)g(t− τ)dτ

)
e−ptdt

= L(f ∗ g)(p).

(5.27)

Since the integral is absolutely convergent, taking p = c0 shows (f ∗ g)(t)e−c0t ∈ L1.

Theorem 5.6 (Differentiation under Laplace transformation). Let f : R→ C be continuously
differentiable function and c0 be a real constant such that f(t)e−c0t ∈ L1 and f ′(t)e−c0t ∈ L1.
Then for p ∈ C with <(p) ≥ c0

(Lf ′)(p) = −f(0) + p(Lf)(p). (5.28)

Proof. Using integration by parts

(Lf ′)(p) =

∫ ∞
0

f ′(t)e−ptdt

=
[
fe−pt

]∞
0

+ p

∫ ∞
0

f(t)e−ptdt.

From complex analysis we can prove an inversion formula.

Theorem 5.7 (Complex Inversion Formula). If f̃ is a bounded, analytic function in some right
half plane consisting of p with <(p) ≥ c0 and f̃(p) → 0 uniformly as |p| → ∞ for <(p) ≥ c0
and ∫ i∞+c0

−i∞+c0

∣∣∣f̃(p)
∣∣∣ |dp| ≤ ∞, (5.29)

then f̃ is the Laplace transformation of

f(t) =
1

2πi

∫ i∞+c0

−i∞+c0

eptf̃(p)dp. (5.30)

Proof. Consider the contour integral along γ as shown in fig. 8.
For p0 enclosed by γ we have by Cauchy’s integral formula

f̃(p0) =
1

2πi

∫
γ

f̃(p)

p0 − p
dp. (5.31)
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Figure 8 – Contour γ for proving the Laplace inversion theorem

Letting R → ∞ the contribution of the arc vanishes by the assumptions and we find for all
p0 ∈ C with <p0 > c0

f̃(p0) =
1

2πi

∫ i∞+c0

−i∞+c0

f̃(p)

p0 − p
dp. (5.32)

On the other hand as <(p0 − p) > 0∫ ∞
0

e−t(p0−p)dt =
1

p0 − p
. (5.33)

Hence

f̃(p0) =
1

2πi

∫ i∞+c0

−i∞+c0

f̃(p)

∫ ∞
0

e−t(p0−p)dtdp

=

∫ ∞
0

e−tp0
1

2πi

∫ i∞+c0

−i∞+c0

eptf̃(p)dpdt

(5.34)

where we can use Fubini since the integrand is by assumption absolutely integrable. Identifying
f , this proves the theorem.

Finally we note that the Laplace transformation is unique with respect to the L1 norm,
i.e. identifying functions which are equal almost everywhere. By linearity this is equivalent to
the statement that a function f with vanishing Laplace transformation is ‖f‖1 = 0, i.e. zero
almost everywhere.

A direct proof is given in [6, Chapter 5] by the following lemma.

Lemma 5.8. Let f be a function f : R+ → C with Laplace transformation f̃ = Lf . If there
exist real constants c0 and σ > 0 such that f(t)e−c0t ∈ L1 and for all n ∈ N

f̃(c0 + nσ) = 0, (5.35)

then ‖f‖1 = 0.

For the proof we use the following lemma.

Lemma 5.9. If f : [a, b]→ C is a continuous function such that∫ b

a

f(x)xndx = 0 (5.36)

for all n ∈ N, then f(x) = 0 for all x ∈ [a, b].
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Proof. By Weierstraß approximation theorem, there exists for every ε > 0 a polynomial p such
that supx∈[a,b] |f(x)− p(x)| < ε.

Using linearity the assumption implies that
∫ b
a
f(x)p(x)dx = 0. Hence∫ b

a

[f(x)]2dx ≤ ε
∫ b

a

|f(x)|dx+

∫ b

a

f(x)p(x)dx = ε ‖f‖1 . (5.37)

Since ε is arbitrary and ‖f‖1 < ∞ for a continuous function, ‖f‖2 = 0. As f is continuous,
this implies that f vanishes everywhere.

Now we can prove the uniqueness.

Proof of Lemma 5.8. Introduce the continuous function Φ : R+ → C by

Φ(t) =

∫ t

0

e−c0τf(τ)dτ (5.38)

which is bounded by f(t)e−c0t ∈ L1 and limt→∞Φ(t) = f̃(c0) = 0.
For p ∈ C with <(p) > c0 we get by partial integration

f̃(p) =

∫ ∞
0

e−(p−c0)te−c0tf(t)dt = (p− c0)

∫ ∞
0

e−(p−c0)tΦ(t)dt. (5.39)

Thus for n = 1, 2, . . . , setting p = c0 + nσ gives∫ ∞
0

e−nσtΦ(t)dt = 0. (5.40)

Substituting x = e−σt, t = − log x
σ and letting ψ(x) = Φ(− log(x)

σ ) this is∫ 1

0

xn−1ψ(x)dx = 0. (5.41)

Since limx→0 ψ(x) = limt→∞Φ(t) = 0, setting ψ(0) = 0 makes ψ a continuous function.
Hence by the previous lemma, ψ(x) = 0 for all x ∈ [0, 1] and so Φ is vanishing. Therefore,

for all t ∈ R+

0 =

∫ t

0

e−c0τf(τ)dτ

=

[
e−c0τ

∫ τ

0

f(x)dx

]t
0

+

∫ t

0

c0e
−c0τ

∫ τ

0

f(x)dxdτ

= e−c0t
∫ t

0

f(x)dx+

∫ t

0

c0e
−c0τ

∫ τ

0

f(x)dxdτ.

(5.42)

Since the second term is differentiable with respect to t, the first one is as well and we find
d
dt

∫ t
0
f(x)dx = 0. As

∫ 0

0
f(x)dx = 0, this implies that

∫ t
0
f(x)dx = 0 for all t, i.e. ‖f‖1 = 0.

Another view by [2, Section 36] comes from relating the complex inversion formula to the
Fourier integral theorem (cf. theorems 5.2 and 5.3) for a function f

f(x) =
1

2π
lim
λ→∞

∫ λ

−λ
eixu

∫ ∞
∞

f(t)e−iutdtdu. (5.43)

Let f : R+ → C be a function such that f(t)e−σt ∈ L1(R+) with a constant σ. Then extend
f to R by setting f(x) = 0 for x < 0. Then in terms of the Laplace transformation choosing
p = σ + iu

(Lf)(p) =

∫ ∞
∞

f(t)e−σte−iutdt. (5.44)

Hence if the Laplace transformation of f vanishes, we can use theorem 5.3 to conclude that f
vanishes almost everywhere.
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5.3 Duhamel’s Principle

The Duhamel principle rewrites a differential equation as integral equation. For completeness
we will briefly repeat the discussion from [26].

For a function u depending on time t and position x consider the problem

∂tu− Lu = f, u(0, x) = φ(x). (5.45)

where L is a differential operator and f is a forcing which may depend on time.
Suppose we can solve the homogeneous problem

∂tu− Lu = 0, u(0, x) = φ(x) (5.46)

with solution operator S
(S(t)φ)(x) = u(t, x) (5.47)

satisfying
(S(0)φ)(x) = φ(x), (∂t − L)(S(t)φ) = 0. (5.48)

Then by Duhamel’s Principle the original problem has the solution

u(t, x) = (S(t)φ)(x) +

∫ t

0

(S(t− s)fs)(x)ds, (5.49)

which can easily be verified as u(0, x) = φ(x) and

(∂t − L)u(t, x) = 0 + S(t− s)fs(x)|t=s +

∫ t

0

(∂t − L)(S(t− s)fs)︸ ︷︷ ︸
=0

ds = ft(x). (5.50)

In general the solution of the integrable equation may not be differentiable in x anymore
and is therefore called mild solution. However, the integral equation in our case has a unique
solution which should describe the physical evolution.

5.4 Volterra Equation

Start with the integral equation for u with given forcing f and kernel k

u(x) +

∫ ∞
−∞

k(x− y)u(y)dy = f(x) (5.51)

which can be formally solved by Fourier transformation which takes the convolution into a
pointwise product.

From [25, Theorem 145] a precise form is:

Theorem 5.10. Let k ∈ L1, ‖k‖1 < 1, f ∈ L2, and k̂, f̂ be the Fourier transformation of k
respectively f . Then

u(x) =
1

2π

∫ ∞
−∞

f̂(ω)

1 + k̂(ω)
eixωdw (5.52)

is well-defined and the unique solution in L2 of

u(x) +

∫ ∞
−∞

k(x− y)u(y)dy = f(x). (5.53)

The uniqueness is understood as almost everywhere or equivalently with respect to the L2

norm.
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Proof. By Parseval’s theorem, Fourier transformation is an isometry in L2 and by [25, Theorem
65] the integral equation is equivalent to

û(ω) + k̂(ω)û(ω) = f̂(ω) (5.54)

for ω in R, where û, f̂ , k̂ are the Fourier transformations of u, f, k.
Since ‖k‖1 < 1, also ‖k̂‖∞ < 1 and we can equivalently write

û(ω) =
f̂(ω)

1 + k̂(ω)
(5.55)

which is in L2. Hence f is uniquely given by the inverse Fourier transformation.

Restrict now to functions which are only non-vanishing in R+, then the integral equation
becomes

u(x) +

∫ x

0

k(x− y)u(y)dy = f(x) (5.56)

which is the Volterra equation.
In this case we can enhance the result as [25, Theorem 147].

Theorem 5.11. If f(x)e−cx ∈ L2(R+) and k(x)e−cx ∈ L1(R+) for some c ∈ R, then there is
a unique solution u of

u(x) +

∫ x

0

k(x− y)u(y)dy = f(x) (5.57)

with u(x)e−c
′x ∈ L2(R+) for large enough c′ given by

u(x) =
1

2π

∫ ∞−ia
−∞−ia

f̂(ω)

1 + k̂(ω)
eixωdω (5.58)

for large enough a.

Proof. Adding a factor e−ax to u, f , and k does not change the equation, thus by choosing a
large enough, it suffices to consider f ∈ L2(R+), k ∈ L1(R+), and ‖k‖1 < 1.

Hence by the previous theorem there exists a unique solution. Putting back the factor e−ax,
the Fourier transformations are shifted by ia and the solution is

u(x) =
1

2π

∫ ∞−ia
−∞−ia

f̂(ω)

1 + k̂(ω)
eixωdω (5.59)

where again

f̂(ω) =

∫ ∞
−∞

f(x)e−ixωdx, (5.60)

k̂(ω) =

∫ ∞
−∞

k(x)e−ixωdx. (5.61)

The solution can be written with a resolvent kernel as in [25, Equation 11.5.6 (page 312)].

Theorem 5.12. If additionally to the previous theorem k(x)e−cx ∈ L2(R+), then the solution
can also be written as

u(x) = f(x)−
∫ x

0

f(x− y)r(y)dy (5.62)

where r is the resolvent kernel given by

r(x) +

∫ x

0

r(x− y)k(y)dy = k(x). (5.63)
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Proof. We can split

f̂(ω)

1 + k̂(ω)
= f̂(ω)− f̂(ω)k̂(ω)

1 + k̂(ω)
. (5.64)

Plugging this into the formula for u yields

u(x) = f(x)−
∫ ∞−ia
−∞−ia

f̂(ω)
k̂(ω)

1 + k̂(ω)
eixωdω. (5.65)

With the additional assumption, we find r̂ := k̂
1+k̂
∈ L2 thus

u(x) = f(x)−
∫ ∞
−∞

f(x− y)r(y)dy (5.66)

where r is the inverse Fourier transformation of r̂, i.e. with the shift

r(x) =
1

2π

∫ ∞−ia
−∞−ia

r̂(ω)eixωdω =
1

2π

∫ ∞−ia
−∞−ia

k̂(ω)

1 + k̂(ω)
eixωdω. (5.67)

By considering a → ∞, we find r(x) = 0 for x < 0, thus the convolution reduces to the given

form. The definition r̂ := k̂
1+k̂

is after Fourier transformation equivalent to eq. (5.63).

After this motivating treatment following [25] we note from [11, Chapter 2] that we can
treat the resolvent kernel more generally. In the rest of this section we will repeat a reduced
treatment of [11]5.

For this recall the convolution f ∗ g of two functions f , g defined on R given for t ∈ R as

(f ∗ g)(t) =

∫
R
f(t− s)g(s)ds (5.68)

whenever the integral exists.
For functions vanishing on R− or functions only defined on R+ the convolution is for t ∈ R+

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds (5.69)

whenever the integral exists. If we now restrict f and g to be defined on [0, T ] for T > 0, the
convolution is still a meaningful integral for t ∈ [0, T ], i.e. we can define the convolution as
function of [0, T ] again. Since we take f and g to be scalar valued, by a change of variable
f ∗ g = g ∗ f . The convolution exists and is bounded by the following theorem.

Theorem 5.13. Let J be R, R+ or [0, T ] for T > 0. If f ∈ L1(J) and g ∈ Lp(J) for p ∈ [1,∞],
then f ∗ g ∈ Lp(J) and ‖f ∗ g‖Lp(J) ≤ ‖f‖L1(J) ‖g‖Lp(J).

Proof. In the case p ∈ [1,∞) note that µ(ds) = f(s)
‖f‖1

defines a probability measure and we can

apply Jensen’s inequality to find for t ∈ J

|(f ∗ g)(t)|p ≤
(∫
|f(t)| |g(t− s)|ds

)p
≤ ‖f‖p−11

∫
|f(s)| |g(t− s)|p ds. (5.70)

Integrate over t and use Fubini to find

‖f ∗ g‖pp ≤ ‖f‖
p
1 ‖g‖

p
p . (5.71)

In the case p =∞ we can trivially bound

|(f ∗ g)(t)| ≤ ‖f‖1 ‖g‖∞ . (5.72)

5In this reference more function spaces and matrix-valued functions are considered.
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For applications we use the following corollary.

Corollary 5.14. Let f ∈ L1
loc(R+) and g ∈ Lploc(R+) for p ∈ [1,∞]. Then f ∗ g ∈ Lploc. If

h ∈ L1
loc(R+), then also

(f ∗ g) ∗ h = f ∗ (g ∗ h). (5.73)

Proof. For t ∈ [0, T ] the convolution (f ∗ g)(t) is already defined by the restriction of f and g
to [0, T ]. Hence by the previous theorem

f ∗ g ∈ Lploc. (5.74)

This shows that for any t ∈ R the integrals of ((f ∗ g) ∗ h)(t) and (f ∗ (g ∗ h))(t) are absolutely
convergent and we can use Fubini to show associativity.

We can now introduce the resolvent kernel more generally.

Theorem 5.15. Let k ∈ L1
loc(R+). Then there exists a solution r ∈ L1

loc(R+) of

r + r ∗ k = k (5.75)

which is unique. This solution is called resolvent kernel.

For the proof we use the following lemma to reduce the considered norm.

Lemma 5.16. Let r ∈ L1
loc(R+) be the resolvent kernel of k ∈ L1

loc(R+), then for any σ ∈ C
the function eσtr(t) ∈ L1

loc(R+) is the resolvent kernel of eσtk(t) ∈ L1
loc(R+).

Proof. For any t ∈ R multiply r + r ∗ k = k by eσt, then

r(t)eσt +

∫ t

0

(
r(t− s)eσ(t−s)

)
(g(s)eσs) ds = k(t)eσt (5.76)

which is the claim.

Proof of theorem 5.15. First we show uniqueness. Suppose r, r̄ ∈ L1
loc(R+) are both solutions.

Then by the shown associativity

r̄ ∗ k = r̄ ∗ (r + r ∗ k) = r ∗ (r̄ + r̄ ∗ k) = r ∗ k (5.77)

and so r = k − r ∗ k = k − r̄ ∗ k = r̄.
With the uniqueness we can now show that it suffices to construct a solution rT on [0, T ]

satisfying for t ∈ [0, T ]
r(t) + (t ∗ k)(t) = k(t). (5.78)

If this is true we can construct solutions rj on [0, j] for j ∈ N and the restriction of rk for
k > j to [0, j] must equal rj by the uniqueness. Hence we can define r ∈ L1

loc by r(t) = rj(t)
for t ∈ [j − 1, j) which satisfies for all t ∈ R the required relation r(t) + (r ∗ k)(t) = k(t).

Hence we can restrict to [0, T ]. Now by dominated convergence∫ T

0

∣∣k(t)e−ct
∣∣ dt (5.79)

converges to 0 as c → ∞, so by lemma 5.16 we can assume
∫ T
0
|k(t)|dt < 1. Let kn be the

n-times convolution of k with itself, i.e.

k∗1 = k, k∗n = k∗(n−1) ∗ k. (5.80)

By theorem 5.13, ‖k∗n‖L1([0,T ]) ≤ ‖k‖
n
L1([0,T ]). Hence

rm =

m∑
j=1

(−1)j−1k∗j (5.81)
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is a Cauchy sequence in L1([0, T ]) and by completeness it converges to r ∈ L1([0, T ]), say.
From the definition we see for all m ≥ 1

rm + rm−1 ∗ k = k. (5.82)

Since by theorem 5.13 also rm−1 ∗ k → r ∗ k as m→∞, taking the limit gives

r + r ∗ k = k. (5.83)

With the resolvent kernel we can solve the Volterra equation.

Theorem 5.17. Let k ∈ L1
loc(R+). Then for every f ∈ L1

loc(R+) there exists a unique solution
u ∈ L1

loc of
u+ k ∗ u = f (5.84)

given by
u = f − f ∗ r (5.85)

where r ∈ L1
loc is the resolvent kernel of k.

Proof. By the previous theorem there exists a resolvent kernel r ∈ L1
loc(R+) satisfying r+r∗k =

k. If u ∈ L1
loc(R+) is a solution then

r ∗ f = r ∗ (u+ k ∗ u) = u ∗ (r + r ∗ k) = u ∗ k (5.86)

and thus
u = f − f ∗ r (5.87)

which proves uniqueness.
On the other hand if u = f − f ∗ r then

u+ k ∗ u = (f − f ∗ r) + k ∗ (f − f ∗ r) = f + f ∗ (k − r)− f ∗ (k ∗ r) = f (5.88)

so this u is a solution.

For the long term behaviour of the solution we want to characterise the integrability of the
resolvent kernel. In the case of an integrable kernel this can be answered completely by the
Paley-Wiener theorem (original reference [19, Chapter 18], our presentation will continue to
follow [11, Chapter 2]).

Theorem 5.18 (Paley-Wiener). Let k ∈ L1(R+). The resolvent kernel r ∈ L1
loc(R+) satisfying

r + r ∗ k = k (5.89)

is in L1(R+) iff for all p ∈ C with <(p) ≥ 0

k̃(p) :=

∫ ∞
0

k(t)e−ptdt 6= −1. (5.90)

The condition is necessary as we can see directly by Laplace transformation. If k, r ∈ L1

then their Laplace transformations k̃, r̃ are continuous and bounded in the right half plane
<(p) ≥ 0. Furthermore they satisfy for p ∈ C with <(p) ≥ 0

r̃(p) + r̃(p)k̃(p) = k̃(p) ⇒ r̃(p)[1 + k̃(p)] = k̃(p) (5.91)

which can only be true if k̃(p) 6= −1.
For proving the sufficiency, the usage of the assumption becomes more apparent if we follow

[11] instead of the original work [19] which uses the following theorem as intermediate step.
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Theorem 5.19 (Whole Line Paley-Wiener). Let k ∈ L1(R). There exists a function r ∈ L1(R)
satisfying r + r ∗ k = k iff for all p ∈ C with <(p) = 0

k̃(p) :=

∫ ∞
−∞

k(t)e−ptdt 6= −1. (5.92)

Here we extended the Laplace transformation to the (bilateral) Laplace transformation.
For p = iω with ω ∈ R, then k̃(iω) becomes the Fourier transformation which is bounded.
Hence by the same argument the condition is necessary.

Using this theorem we can prove theorem 5.18.

Proof of theorem 5.18 using theorem 5.19. We are only left to show the sufficiency of the cri-
terion.

Suppose k ∈ L1(R+) with k̃(p) 6= −1 for all p ∈ C with <(p) ≥ 0. Then we extend k to a
function in L1(R) with k(x) = 0 for x < 0. Then still k̃(p) 6= −1 for all p ∈ C with <(p) ≥ 0.

By theorem 5.19 there exists r ∈ L1(R) with r+ r ∗ k = k and we split r into r− and r+ as

r−(t) =

{
r(t) if t < 0

0 if t ≥ 0
r+(t) =

{
0 if t < 0

r(t) if t ≥ 0
(5.93)

so that we are only left to show that r− is vanishing since then we can restrict r to a function
of R+ and recover the half-line convolution.

For p ∈ C with <(p) = 0 we have as k̃(p) 6= −1 the relation

r̃(p) = k̃(p)[1 + k̃(p)]−1. (5.94)

By linearity this is

r̃−(p) =
k̃(p)

1 + k̃(p)
− r̃+(p). (5.95)

The LHS now is an analytic function of p for <(p) < 0 which is continuous and bounded for
<(p) ≤ 0. Since k̃(p) 6= −1 for <(p) ≥ 0, the RHS is an analytic function of p for <(p) > 0.
As k̃(p) → 0 uniformly as |p| → ∞ for <(p) ≥ 0, by continuity there exists a δ > 0 such that∣∣∣1 + k̃(p)

∣∣∣ > δ for all <(p) ≥ 0. Hence the RHS is also continuous and bounded for <(p) ≥ 0.

Therefore the LHS and RHS must be part of the same bounded entire function which must be
constant. As r̃−(p)→ 0 as p→ −∞, this constant is 0 and so by the uniqueness of the Fourier
transformation r− is vanishing.

The proof of theorem 5.19 is more conveniently written in terms of the Fourier transforma-
tion. For k, r ∈ L1(R) introduce for ω ∈ R the Fourier transformations

k̂(ω) =

∫
k(x)e−ixωdx (5.96)

r̂(ω) =

∫
r(x)e−ixωdx (5.97)

and the condition r + r ∗ k = k for the resolvent kernel is

r̂(ω) + r̂(ω)k̂(ω) = k̂(ω). (5.98)

On the other hand if we can find r ∈ L1(R) such that for all ω its Fourier transformation satisfies

r̂(ω) + r̂(ω)k̂(ω) = k̂(ω) then by the uniqueness of the Fourier transformation r+ r ∗ k − k, as
then r+ r ∗ k− k has vanishing Fourier transformation and must be vanishing by theorem 5.3.

Hence we are going to prove that such a r ∈ L1(R) exists. For this let f̂ denote the Fourier
transformation of a function f. We are going to do this like in the proof of theorem 5.15 by a
series argument and split ω in ranges to control the norm. With a restriction on the norm, we
can construct a building block by the following lemma.
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Lemma 5.20. Let f, g ∈ L1(R) and ‖g‖1 < 1. Then there exists h ∈ L1(R) such that for all
ω ∈ R

ĥ(ω) =
f̂(ω)

1 + ĝ(ω)
. (5.99)

Proof. As |ĝ(ω)| ≤ ‖g‖1 < 1 for all ω ∈ R the denominator is well-defined. Again denote with
g∗ the n-times convolution of g with itself, i.e. g∗1 = g and g∗n = g∗(n−1) ∗ g.

Then by theorem 5.13 ‖g∗n‖1 ≤ ‖g‖
n
1 so

hn = f ∗
n∑
i=0

(−1)ig∗i (5.100)

is a Cauchy sequence which converges to h ∈ L1(R). Also for n ≥ 1

hn + g ∗ hn−1 = f (5.101)

and taking n→∞, the terms converge separately to

h+ g ∗ h = f. (5.102)

Hence by taking the Fourier transformation

ĥ(ω) =
f̂(ω)

1 + ĝ(ω)
(5.103)

for all ω ∈ R.

In order to localise the problem in Fourier space we introduce the Fejér kernel

ζ(t) =
1

πt2
(1− cos t) (5.104)

with Fourier transformation

ζ̂(ω) =

{
1− |ω| if ω ≤ 1

0 if ω > 1
(5.105)

Further define

η(t) = 4ζ(2t)− ζ(t) =
1

πt2
(cos t− cos 2t) (5.106)

with Fourier transformation

η̂(ω) =


1 if |ω| ≤ 1

2− |ω| if 1 < |ω| ≤ 2

0 if |ω| > 2

(5.107)

which is a localised function constant around the origin. Finally, we can scale these by δ as

ζδ(t) = δζ(δt), ηδ(t) = δη(δt) (5.108)

so that
ζ̂δ(ω) = ζ

(ω
δ

)
, η̂δ(ω) = η

(ω
δ

)
. (5.109)

With this we can prove the following lemma which allows us to localise the Fourier transfor-
mation around a point.

Lemma 5.21. Let f ∈ L1(R), ε > 0, ω0 ∈ R. Then there exists a number δ independent of
ω0 and g ∈ L1(R) with ‖g‖1 ≤ ε satisfying

f̂(ω) = f̂(ω0) + ĝ(ω) (5.110)

for |ω − ω0| ≤ δ.
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Proof. For δ < 0 and ηδ from before consider

ĝδ(ω) = η̂δ(ω − ω0)(f̂(ω)− f̂(ω0)). (5.111)

For |ω − ω0| ≤ δ we have η̂δ(ω−ω0) = 1 and so ĝδ(ω) = f̂(ω)− f̂(ω0). Further ĝδ is the Fourier
transformation of gδ given by

gδ(t) =

∫
R
eiω0(t−s)ηδ(t− s)f(s)ds− eiω0tηδ(t)

∫
R
f(s)e−iω0sds

=

∫
R
eiω0(t−s)[ηδ(t− s)− ηδ(t)]f(s)ds.

(5.112)

Hence using Fubini on the absolute value

‖gδ‖1 ≤
∫
R
|f(s)|

∫
R
|ηδ(t− s)− ηδ(t)|dtds (5.113)

which is an estimate independent of ω0. Furthermore the integrand is bounded by

|f(s)|
∫
R
|ηδ(t− s)− ηδ(t)|dt ≤ 2 |f(s)| ‖ηδ‖1 (5.114)

and pointwise converging to 0 as δ → 0. Hence by dominated convergence the bound tends to
0 as δ → 0. Thus we can make ‖gδ‖1 independent of ω0 as small as we want.

The large frequencies can be handled by the following lemma.

Lemma 5.22. Let f ∈ L1(R) and ε > 0. There exists M > 0 and g ∈ L1(R) with ‖g‖1 ≤ ε
satisfying

f̂(ω) = ĝ(ω) (5.115)

for |ω| ≥M .

Proof. Use the Fejér kernel ζρ and consider

ĝ(ω) = f̂(ω)− ζ̂ρ(ω)f̂(ω). (5.116)

Since ζ̂ρ is vanishing for |ω| ≥ ρ, we have for |ω| ≥ ρ

ĝ(ω) = f̂(ω). (5.117)

Further ĝ is the Fourier transformation of g given by

g(t) = f(t)−
∫
ζδ(s)f(t− s)ds

= f(t)−
∫
ζ(s)f(t− s

δ
)ds

=

∫
ζ(s)(f(t)− f(t− s

δ
))ds

(5.118)

where we used a change of variables and that
∫
ζ(s)ds = 1 which can straightforward be

calculated by contour integration. Hence using Fubini we find for the absolute value

‖g‖1 ≤
∫
ζ(s)

∥∥f − fs/δ∥∥1 ds (5.119)

where fs is the shifted function, i.e. fs(x) = f(x−s). By dominated convergence ‖f − fs‖1 → 0
as s→ 0. Since ‖f − fs‖1 ≤ 2 ‖f‖1, by dominated convergence again, ‖g‖1 → 0 as δ →∞.

Now we can put the pieces together to prove the remaining sufficiency of the whole line
Paley-Wiener theorem.
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Proof of theorem 5.19. From the remarks before it remains to prove that for k ∈ L1(R) with

k̂(ω) 6= −1 for all ω ∈ R there exists r ∈ L1(R) with r̂(ω)+r̂(ω)k̂(ω) = k̂(ω), where we expressed
the condition in terms of the Fourier transformation instead of the Laplace transformation.

By the Riemann-Lebesque lemma k̂(ω)→ 0 as ω → ±∞. Hence by continuity there exists

A > 0 with
∣∣∣1 + k̂(ω)

∣∣∣ ≥ A for all ω ∈ R.

By lemma 5.22 there exists M and g∞ ∈ L1(R) with ‖g∞‖1 < 1 and k̂(ω) = ĝ∞(ω) for
|ω| ≥M . Whithout loss of generality we can take M ∈ N.

Next by lemma 5.21 we can find m ∈ N and gj ∈ L1(R) for j = −mM, . . . ,−1, 0, 1, . . . ,mM

with ‖gj‖1 < A and k̂(ω) = k̂( jm ) + ĝj(ω) for
∣∣ω − j

m

∣∣ ≤ 1
m . Then for |ω − ω0| ≤ 1

m where

ω0 = j
m

k̂(ω)

1 + k̂(ω)
=

k̂(ω)

1 + k̂(ω0)

[
1 +

ĝj(ω)

1 + k̂(ω0)

]−1
(5.120)

where
∥∥∥ gj(ω)

1+k̂(ω0)

∥∥∥
1
≤ ‖gj‖1A < 1 and 1 + k̂(ω0) is just a number. Hence by applying lemma 5.20

to g∞ respectively
gj

1+k̂(ω0)
there exist r∞ ∈ L1 and rj ∈ L1 for j = −mM, . . . ,mM such that

r̂∞(ω) =
k̂(ω)

1 + k̂(ω)
for |ω| ≥M (5.121)

r̂j(ω) =
k̂(ω)

1 + k̂(ω)
for

∣∣∣∣ω − j

m

∣∣∣∣ ≤ 1

m
. (5.122)

Finally define the shifted Fejér kernel ψj(t) = 1
me
−ijt/mζ( tm ) with Fourier transformation

ψ̂j(ω) =

{
1− |mω − j| ,

∣∣ω − j
m

∣∣ ≤ 1
m

0,
∣∣ω − j

m

∣∣ > 1
(5.123)

and let

r =

mM∑
j=−mM

ψj ∗ (rj − r∞) + r∞ (5.124)

which is integrable as it is a finite sum of integrable functions. By the shape of the Fejér kernel
for all |ω| ≤M

mM∑
j=−mM

ψ̂0(ω) = 1. (5.125)

Thus for all ω ∈ R1−
mM∑

j=−mM
ψ̂j(ω)

 r̂∞(ω) =

1−
mM∑

j=−mM
ψ̂j(ω)

 k̂(ω)

1 + k̂(ω)
. (5.126)

On the other hand ψ̂j has support
∣∣ω − δ

m

∣∣ ≤ 1
m and thus for all ω ∈ R

ψ̂j(ω)r̂j(ω) = ψ̂j(ω)
k̂(ω)

1 + k̂(ω)
. (5.127)

Adding this for j = −mM, . . . ,mM proves for all ω ∈ R the desired relation

r̂(ω) =
k̂(ω)

1 + k̂(ω)
. (5.128)
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5.5 Principal Value and Plemelj Formula

In our analysis we considered the limit of a Cauchy type integral. This limit can be calculated
by the Plemelj formula which we prove here.

The Plemelj formula states for distributions D′(R) of R

1

x− i0
= PV

(
1

x

)
+ iπδ0 (5.129)

or equivalently
1

x+ i0
= PV

(
1

x

)
− iπδ0. (5.130)

The principle value PV is the prescription to cancel the divergence by symmetry.

Definition 5.23 (Principle Value). For an interval [a, b] ∈ R let f : [a, b] → C be a function
which diverges at c ∈ (a, b). Then define

PV

∫ b

a

f(x)dx = lim
ε→0

(∫ c−ε

a

+

∫ b

c+ε

)
f(x)dx. (5.131)

For f : R→ C define

PV

∫ ∞
−∞

f(x)dx = lim
λ→∞

∫ λ

−λ
f(x)dx. (5.132)

These integrals with principle value are also sometimes called singular integral [16].
From [17] we adapt a stronger and more concrete form which we enhance to cover conver-

gence from the complex plane as suggested by [18, Chapter 2]6.

Theorem 5.24. If f ∈ L1 is a Lipschitz continuous function, then

lim
λ→0+0

∫
R

f(x)

x− iλ
dx = PV

∫
f(x)

x
dx+ iπf(0). (5.133)

Moreover, the rate of convergence can be bounded by the Lipschitz constant K, a L1 norm
bound M1, and a L∞ norm bound M∞, i.e. for every ε > 0 there exists δ > 0 only depending
on K, M1, and M∞ such that∣∣∣∣∫

R

f(x)

x− iλ
dx−

(
PV

∫
f(x)

x
dx+ iπf(0)

)∣∣∣∣ ≤ ε (5.134)

holds for all λ ∈ (0, δ) and for all f ∈ L1 satisfying the norm bounds ‖f‖1 ≤M1 and ‖f‖∞ ≤
M∞ and the Lipschitz continuity |f(x)− f(y)| ≤ K |x− y| for all x, y ∈ R.

Proof. Introduce an auxiliary Lipschitz continuous function g ∈ L1 which is even (i.e. g(x) =
g(−x) for all x ∈ R) and g(0) = 1.

Since f and g are Lipschitz continuous, f(x)−f(0)
x and 1−g(x)

x are bounded. Hence

PV

∫
f(x)

x
dx = lim

ε→0

(∫
|x|≥ε

f(x)

x
g(x)dx+

∫
|x|≥ε

f(x)
1− g(x)

x
dx

)

= lim
ε→0

(∫
|x|≥ε

f(x)− f(0)

x
g(x)dx+

∫
|x|≥ε

f(x)
1− g(x)

x
dx

)

=

∫
R

f(x)− f(0)

x
g(x)dx+

∫
R
f(x)

1− g(x)

x
dx

(5.135)

where we used that
∫
|x|≥ε f(0) g(x)x dx = 0 as g is even.

6His proof uses g(x) = 1 and is generalised to any contour.
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On the other hand for λ > 0 the integral
∫
R
f(x)
x−iλdx is convergent and we can split it as∫

R

f(x)

x− iλ
dx =

∫
R

f(x)− f(0)

x− iλ
g(x)dx+

∫
R
f(x)

1− g(x)

x− iλ
dx+ f(0)

∫
R

g(x)

x− iλ
dx. (5.136)

Since f and g are Lipschitz continuous, the first two integrals converge by dominated conver-

gence as λ→ 0 + 0 to the RHS of eq. (5.135), i.e. to PV
∫ f(x)

x dx.

Therefore, we are left to show that limλ→0+0

∫
R
g(x)
x−iλdx = iπ. For this we may choose g as

g(x) = e−x
2

which we can extend to an analytic function of C. Hence we can integrate equally
along a contour Dε intended at 0 with an arc of radius ε as shown in fig. 9.

<x

=x

−ε ε

Dε

Figure 9 – Contour Dε in proving Plemelj formula

Then
∫
Dε

g(x)
x−iλdx converges to

∫
Dε

g(x)
x dx. Finally, the contributions along the real axis in∫

Dε

g(x)
x dx cancel by symmetry and we are only left with the arc which is as ε→ 0 equal to iπ

by the indentation lemma or directly the limit is
∫ 2π

θ=π
e−2πiθ

ε iεe2πiθ = iπ.
With this g we can also show the explicit bound given the positive constants K, M1, M∞,

and ε. We can choose δ small enough such that for all λ ∈ (0, δ)∣∣∣∣∫
R

g(x)

x− iλ
dx− iπ

∣∣∣∣ ≤ ε

3M∞
(5.137)

and so as ‖f‖∞ ≤M∞ ∣∣∣∣f(0)

∫
R

g(x)

x− iλ
dx− iπf(0)

∣∣∣∣ ≤ ε

3
. (5.138)

Next let r = min
(

ε
24M∞

, ε
24K

)
then∣∣∣∣∣

∫
|x|≤r

f(x)− f(0)

x− iλ
g(x)dx−

∫
|x|≤r

f(x)− f(0)

x
g(x)dx

∣∣∣∣∣ ≤ ε

6
(5.139)

since r ≤ ε
24K and

∣∣∣ f(x)−f(0)x−iλ g(x)
∣∣∣ ≤ K for all x and λ (including 0). Similarly∣∣∣∣∣

∫
|x|≤r

f(x)
1− g(x)

x− iλ
dx−

∫
|x|≤r

f(x)
1− g(x)

x
dx

∣∣∣∣∣ ≤ ε

6
(5.140)

since r ≤ ε
24M∞

and
∣∣∣f(x) 1−g(x)

x−iλ

∣∣∣ ≤M∞ for all x and λ.

For |x| ≥ r on the other hand 1
x−iλ converges uniformly to 1

x , so we can choose δ small
enough such that for all λ ∈ (0, δ)∣∣∣∣∣

∫
|x|>r

f(x)− f(0)

x− iλ
g(x)dx−

∫
|x|>r

f(x)− f(0)

x
g(x)dx

∣∣∣∣∣ ≤ ε

6
(5.141)

47



and ∣∣∣∣∣
∫
|x|>r

f(x)
1− g(x)

x− iλ
dx−

∫
|x|>r

f(x)
1− g(x)

x
dx

∣∣∣∣∣ ≤ ε

6
(5.142)

using that ‖f‖1 < M1.
By the triangle inequality we can put everything together which shows the explicit bound.

From the Lipschitz condition we could conclude ‖f‖1 ≥ ‖f‖∞K as we can see in fig. 10 so
that we could drop the L∞ bound in the theorem.

x

f(x)

‖f‖∞

x0

Figure 10 – Illustration why ‖f‖1 ≥ K ‖f‖∞ for a Lipschitz continuous function f with maximal
absolute value at x0.

For our application the following corollary is important.

Corollary 5.25. If f ∈ L1 is a Lipschitz continuous function, then∫
R

f(x+ y)

x− iλ
dx→ PV

∫
f(x+ y)

x
dx+ iπf(y) (5.143)

uniformly over y ∈ R as λ→ 0 + 0.

Proof. Use the general bound from the previous theorem as the shifted function fy(x) = f(y+x)
satisfies the same Lipschitz condition and has the same bounds.

Since for λ > 0, the integral
∫
R
f(x+y)
x−iλ dx is a continuous function of y, the uniform conver-

gence shows that the limit is continuous.
Finally we remark that the Lipschitz continuity can be replaced by Hölder continuity as

done in [18].

6 Outlook

The great achievement of Mouhot and Villani [17] after more than 60 years was to show that
Landau damping follows from the full Vlasov equation, which we did not discuss at all in this
essay. We also did not look further how the full distribution evolves under damping which
even in the linearized case can lead to non-trivial effects like the plasma echo [10]. A future
research could further analyse this behaviour under the full Vlasov equation. Another view
on linear Landau damping are the Van Kampen modes which are more difficult to justify. A
comparison by Backus can be found in [1].

Mathematically, the analysis can be expressed by semi-groups and spectral analysis of the
involved operators. This gives a very powerful framework to formulate and understand the
results. Also it may be enlightening to construct a solution f1 with initial integrable but
not square integrable solution and unbounded

∫ ∣∣∫ f1(t, vx, vy, vz)dvydvz
∣∣dvx as proposed by

Backus explicitly to compare it with the Landau damping.
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Physically, for a collision free plasma there are interesting effects due to magnetic fields. A
development of the corresponding physical equations can be found in [23]. Since the magnetic
field couples to the velocity, we cannot simply change the interaction potential. An example
where magnetic fields are crucial is the corona of the sun or in attempts to build a fusion
reactor where the plasma is confined with a magnetic field.

A Notational Overview

Throughout the essay we will use the notation ∂f(x,y)
∂x for a partial derivative with respect to

the first variable at the point (x, y).
Let e, m be the charge respectively the mass of a particle. If we have different kind of

particles, we use greek indices.
The distribution of particles is given by f(t,x,v) where f(t,x,v)dxdv is the number of

particles with position in [x,x + dx] and velocity [v,v + dv]. The evolution is determined by
the Vlasov equation

∂f(t,x,v)

∂t
+ v · ∂f(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f(t,x,v)

∂v
= 0, (A.1)

∇2φ(t,x) = −4π

(
ρb + e

∫
f(t,x,v)dv

)
(A.2)

where ρb(x) is the distribution of background charges and the electric potential φ can be
replaced by the electric field E = −∇φ. Furthermore, the differential equation for φ can be
replaced using the fundamental solution by

φ(t,x) =

∫ (
e

|x− y|

∫
f(t,y,v)dv

)
dy. (A.3)

For several kind of particles we find

∂fα(t,x,v)

∂t
+ v · ∂fα(t,x,v)

∂x
− eα
mα

∂φ(t,x)

∂x
· ∂fα(t,x,v)

∂v
= 0 (A.4)

∇2φ(t,x) = −4π

(
ρb +

∑
α

eα

∫
fα(t,x,v)dv

)
. (A.5)

Consider a spatial homogenous distribution f0(v) and background charges ρb = e
∫
f0(v)dv.

This is a solution and we consider a small perturbation f1(t,x,v). The linearised equation for
f1(t,x,v) is

∂f1(t,x,v)

∂t
+ v · ∂f1(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f0(v)

∂v
= 0, (A.6)

∇2φ(t,x) = −4πe

∫
f1(t,x,v)dv. (A.7)

For several kinds of particles

∂f1α(t,x,v)

∂t
+ v · ∂f1α(t,x,v)

∂x
− e

m

∂φ(t,x)

∂x
· ∂f0α(v)

∂v
= 0, (A.8)

∇2φ(t,x) =
∑
α

−4πeα

∫
f1α(t,x,v)dv. (A.9)

By linearity consider spatial Fourier mode k separately which evolves by

∂f1(t,v)

∂t
+ ikvxf1(t,v)− iφ(t)

ke

m

∂f0(v)

∂vx
= 0, (A.10)
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k2φ(t) = 4πe

∫
f1(t,v)dv. (A.11)

where we have chosen k along the x-axis.
A growing mode with frequency ω (=(ω) > 0) exists if

k2 = Z
(ω
k

)
(A.12)

where

Z(s) =

∫
dh(u)

du

du

u− s
, (A.13)

h(u) = ω2
pg0(u), (A.14)

g0(u) =
1

n

∫
f0(u, vy, vz)dvydvz (A.15)

and the (unperturbed) plasma frequency ωp =
√

4πne2/m absorbes the constants with the
(unperturbed) density n =

∫
f0(v)dv. For several kinds of particles change

h(u) =
∑
α

ω2
pαg0α(u) (A.16)

where

g0α(u) =
1

nα

∫
f0α(u, vy, vz)dvydvz. (A.17)
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